文章快速检索     高级检索
  新医学  2017, Vol. 48 Issue (2): 69-73  DOI: 10.3969/j.issn.0253-9802.2017.02.001
0

引用本文 [复制中英文]

刘莹莹, 陈晓红. 慢性应激介导的神经内分泌和免疫变化对多发性硬化的影响[J]. 新医学, 2017, 48(2): 69-73.
Liu Ying-ying, Chen Xiaohong. Effect of chronic stress-mediated neuroendocrine and immune changes on multiple sclerosis[J]. Journal of New Medicine, 2017, 48(2): 69-73.

基金项目

国家自然科学基金国际(地区) 合作与交流项目(81461148024)

通讯作者

陈晓红,主任医师,教授,博士研究生导师,中山大学附属第三医院神经内科副主任。中华医学会神经病学分会癫痫学组委员,广东省医学会神经病学分会癫痫学组委员,广东省老年保健协会副主任委员,广东省中西医结合学会常务委员。作为项目负责人获国家自然科学基金和广东省自然、省科技计划项目共5项,获国家自然科学基金中国与以色列科学基金(NSFC-ISF) 国际合作研究项目1项。以第一和(或) 通讯作者发表SCI论文20余篇。研究方向:脑血管病、癫痫、神经免疫疾病。xiaohongchenzssy@aliyun.com

文章历史

收稿日期:2016-09-01
慢性应激介导的神经内分泌和免疫变化对多发性硬化的影响
刘莹莹, 陈晓红     
510630 广州,中山大学附属第三医院神经内科
摘要: 多发性硬化是一种累及中枢神经系统的慢性致残性自身免疫性疾病,其具体发病机制尚未明确,可能是由环境和遗传因素共同作用的结果。心理社会应激会增加多发性硬化的发病及复发风险,慢性应激促发并加重多发性硬化动物模型的病情。现有的资料显示,慢性应激主要通过丘脑-垂体-肾上腺/性腺轴、交感神经系统及细胞体液免疫等机制影响多发性硬化。该文就慢性应激介导的神经内分泌和免疫变化对多发性硬化的影响作介绍。
关键词: 慢性应激    多发性硬化    丘脑-垂体-肾上腺/性腺轴    交感神经系统    免疫    
Effect of chronic stress-mediated neuroendocrine and immune changes on multiple sclerosis
Liu Ying-ying, Chen Xiaohong     
Department of Neurology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
Corresponding author: Chen Xiaohong, E-mail:xiaohongchenzssy@aliyun.com
Abstract: Multiple sclerosis is a chronic disabling autoimmune disease involved with the central nervous system. Although the exact pathogenesis remains elusive, it probably results from the combined effect of both environmental and genetic factors. Psychosocial stress increases the incidence and recurrence of multiple sclerosis. Chronic stressors induce and exacerbate the severity of multiple sclerosis in animal models. Existing data demonstrate that chronic stressors mainly affect multiple sclerosis through the hypothalamus-pituitary-adrenal/gonadal axis, sympathetic nervous system and cell and humoral immune system. This article aims to evaluate the effect of chronic stress-mediated neuroendocrine and immune changes on multiple sclerosis.
Key words: Chronic stress    Multiple sclerosis    Hypothalamus-pituitary-adrenal/gonad axis    Sympathetic nervous system    Immune    

多发性硬化(MS) 是一种累及中枢神经系统(CNS) 的慢性致残性自身免疫性疾病,全球患病数超过2 000 000例,以CNS慢性淋巴细胞浸润、髓鞘脱失、胶质细胞增生、轴索和少突胶质细胞不同程度病理改变及逐渐进展的神经功能障碍为特征[1]。其确切病因及发病机制仍不明确,目前研究者们认为可能是环境和遗传因素共同作用的结果[2]。自从Charcot描述了MS的临床表现,应激就被认为是MS发病及复发的潜在促发因素[3]。应激是机体受到各种有害因素刺激后所做出的一系列广泛而复杂的防御反应。本文中慢性应激是指持续超过21 d的应激刺激。多年来,已有相当多的研究资料显示社会心理应激会对MS发病产生影响。本文就慢性应激介导的神经内分泌和免疫变化对MS的影响作介绍。

一、 慢性应激和MS及其动物模型

有Meta分析显示应激生活事件后MS进展的风险明显增加[4]。Yamout等[5]的研究表明,暴露于战争相关事件下的MS患者临床复发率和MRI活动病灶出现几率均增高。Golan等[6]的研究数据也表明暴露于战争下的MS患者复发风险增加。国内学者Liu等[7]对MS患者进行回顾性研究, 发现社会心理因素与MS的发病及临床表现有着十分密切的关联。商永华等[8]的研究结果也显示MS的发病特别是复发与社会心理因素相关。Mitsonis等[9]对门诊26例复发缓解型MS女性患者进行长达56.3周的随访,发现MS的复发和应激事件的数量及持续时间有关,而与应激的严重程度和类型无关。

慢性应激刺激下的雌性实验性自身免疫性脑脊髓炎(EAE) 小鼠病情更重[10]。慢性应激刺激促发并加重大鼠EAE病情[11]。Welsh等[12]用Theiler病毒诱发一种MS的小鼠模型,结果发现,与对照组相比,加入慢性应激刺激的小鼠脱髓鞘病变发生得更早且病情更严重,这是因为该组小鼠免疫反应被抑制,病毒复制和播散严重程度明显高于对照组。

应激在MS发病及复发中的具体作用机制是复杂的。应激刺激作用于机体后,可引起一系列非特异性的神经-内分泌反应,其中主要特征为激活下丘脑-垂体-肾上腺(HPA) 轴和交感神经系统(SNS)。糖皮质激素(GCs) 和儿茶酚胺均被许多研究证明可以影响机体的免疫功能[13]

二、 慢性应激、MS (动物模型) 和HPA轴

HPA轴在MS进展阶段过度激活,并与致残程度及认知障碍相关[14]。应激刺激下促肾上腺皮质激素释放激素(CRH) 和神经降压素分泌增加,两者协同刺激肥大细胞,导致血管通透性增加、血脑屏障破坏[15]。MS患者下丘脑内神经元CRH浓度及活性均高于对照组[14]。有研究显示,CRH缺陷EAE小鼠临床评分更低,CNS炎症细胞浸润更少。此外,在CRH缺陷小鼠中,活化T淋巴细胞的抗原特异性反应以及抗-CD3/抗-CD28 T淋巴细胞抗原受体(TCR) 聚集减少,Th1细胞因子产生减少,Th2细胞因子产生增加[16]

慢性应激刺激使鼠尿中皮质醇水平明显升高[10]。慢性应激刺激和地塞米松处理的雌性EAE小鼠病情更重,但这一变化可被GCs拮抗剂拮抗,这表明GCs在应激中具有重要作用[10, 17]。暴露在社会心理应激下的动物被观察到存在GCs抵抗,这可能是应激影响MS的可能机制[18]。慢性应激刺激下的EAE小鼠脾细胞可以抵抗甲基泼尼松龙的免疫抑制作用,引起IL-2、IFN-γ、IL-17A及IL-10浓度升高[10]。长期暴露在慢性应激下的免疫细胞上的GCs受体数量及功能均下降,从而对皮质醇调控的反应也下降。慢性应激刺激下,皮质醇浓度升高,根据GCs抵抗假说,引起免疫细胞上的GCs受体下调,导致炎症反应的风险增加[19]

三、 慢性应激、MS (动物模型) 及下丘脑-垂体-性腺(HPG) 轴

女性MS的发病率较男性更高、预后更好[20]。在EAE中同样也存在着性别差异,雌性小鼠对EAE更加易感[21]。慢性应激引起的EAE小鼠病情加重和皮质醇水平升高在雌性小鼠中更为明显[10]。应激抑制HPG轴。应激通过激活促肾上腺皮质激素释放因子(CRF) 系统、交感肾上腺通路和脑的边缘系统调控促性腺激素释放激素(GnRH) 的分泌。CRF抑制GnRH的脉冲式发放。CRF拮抗剂可以阻止多种应激刺激引起的GnRH脉冲式发放抑制[22]

HPG轴的性激素具有免疫调节作用。雌激素抑制依赖T淋巴细胞的免疫功能,增强B淋巴细胞免疫[23]。雌激素在转录水平调节β2肾上腺素能受体β2ADR-R基因,并在胸腺成熟后结合到腺苷酸环化酶AMP系统,从而改变T淋巴细胞介导的免疫反应[24-25]。17β-雌二醇预处理阻止树突状细胞(DC) 将抗原提呈给T淋巴细胞,从而改变细胞因子的产生模式,增加Th2细胞因子(IL-10和IL-4),减少Th1细胞因子(TNF-α和干扰素-γ)。17β-雌二醇处理的EAE小鼠在发病时DC向CNS的迁移明显减少[26-27]。雌激素还可以减少免疫细胞分泌基质金属蛋白酶(MMP)-9,从而减少炎症细胞向CNS迁移。研究表明,MS患者体内催乳素水平较高,导致Th1细胞产生的干扰素-γ和IL-2以及Th2细胞激活产生的自身抗体增加[28]。孕酮治疗的EAE小鼠,炎症因子IL-2和IL-17产生减少,IL-10产生增加,从而减轻疾病病情[29]。男性MS患者中,低睾酮水平及高雌二醇水平与脑损害严重性相关[30]。雄激素治疗能显著延迟EAE的发病和进展[31]

四、 慢性应激、MS (动物模型) 及SNS

慢性心理应激组大鼠血浆肾上腺素、去甲肾上腺素水平显著高于正常对照组[32]。早先的研究显示α1肾上腺素能受体拮抗剂哌唑嗪可抑制EAE Lewis大鼠临床和组织学进展,这一抑制作用是通过拮抗α1肾上腺素能受体来实现的,因为α2及β肾上腺素能受体拮抗剂均能使EAE病情加重,哌唑嗪同样可以抑制由激活的脾细胞和淋巴结细胞过继转移而致敏的EAE模型的临床和组织学进展[33-34]。β肾上腺素能受体激动剂能保护EAE大鼠[35]。与正常对照相比,慢性复发型EAE大鼠脾细胞上β肾上腺素能受体数量明显增加,而β2肾上腺素能受体激动剂特布他林能明显减少慢性复发型EAE大鼠脾细胞上该受体的数量[36]

近几年已有大量的研究探讨了SNS参与应激对免疫系统调节的机制, Felten等[37]认为, 不管在中枢淋巴器官(骨髓和胸腺) 还是外周淋巴器官(脾脏和淋巴结) 均存在直接的交感神经纤维支配。Mills等[38]则通过放射配体结合研究证实, 在不同的免疫细胞(T和B淋巴细胞) 膜上均存在α和β肾上腺素能受体。β肾上腺素能受体激动剂不仅能抑制B和T淋巴细胞功能,还能降低巨噬细胞的吞噬活性(可减少髓鞘脱失),抑制干扰素-γ引起的组织相容性复合物(MHC)Ⅱ表达(抑制抗原呈递) 和TNF-α分泌[39]。β2肾上腺素治疗引起循环中AMP浓度升高,后者调控细胞因子的表达(如抑制TNF-α,同时刺激IL-8)[40]。相反,如果免疫细胞上α肾上腺素能受体激活将引起丝裂原活化蛋白(MAP) 激酶活化,从而引起向Th1样细胞因子模式转移[40]。交感神经系统的其他递质,如神经肽Y也可能参与调节儿茶酚胺对免疫功能的影响[41]

五、 慢性应激、MS (动物模型) 及免疫

慢性应激刺激下的EAE小鼠脾细胞数量和脾脏重量均明显下降,脾脏重量/体质量下降约15%[10]。有研究表明慢性应激处理组大鼠EAE外周血CD4+比例、CD4+/CD8+比值均低于对照组,CD8+细胞比例与对照组相当[11-12]。慢性应激雌性小鼠脾中CD4+T淋巴细胞下降8%,外周血淋巴细胞下降33.7%。慢性应激促进EAE小鼠体内淋巴细胞向Th17方向转化,而Th17细胞是MS和EAE发病的主要致病性T淋巴细胞[42]。慢性应激降低Treg与Teff比值,增加Th1与Th17比值。在EAE发病初期,Foxp3+细胞、CD127+细胞及脾脏CD4+ T淋巴细胞中CD127+细胞的比值均降低,且随着疾病的恢复,这一趋势逐渐消失[11]

在Theiler病毒诱发的鼠MS模型中,慢性应激减少脾脏CD4+和CD8+细胞对病毒的反应,明显减少干扰素-γ介导的抗病毒性CD8+T淋巴细胞的中枢浸润[43]。慢性应激也降低Th1转录因子T-β和Th2转录因子GATA3,另外病毒介导的Th1和Th2细胞因子水平也降低,这表明慢性应激抑制Th1和Th2细胞反应,而不是抑制Th1向Th2转化。在早先的研究中我们发现,慢性应激导致受激活调节正常T细胞表达和分泌因子、淋巴细胞趋化因子、IL-10和单核细胞趋化蛋白-1水平降低,引起IL-6、粒细胞集落刺激因子和肝巨噬细胞水平升高[43-44]

六、 小结

应激反应是十分复杂的过程,在此过程中,CNS、内分泌系统与免疫系统之间互相作用、互相调节[45]。慢性应激过程中,糖皮质激素、性激素及儿茶酚胺水平的动态变化及其对机体细胞免疫和体液免疫功能的影响,与MS复发和病情加重有关。因此,减少和控制MS患者病程中慢性应激事件的发生将有利于缓解MS病情、降低其复发风险。但是,应激的影响是由多方面因素决定的,包括应激的性质、程度、持续时间及个体的性格类型。慢性应激对MS发病或复发影响的具体机制仍有待进一步深入研究。

参考文献
[1] McQualter JL, Bernard CC. Multiple sclerosis: a battle between destruction and repair[J]. J Neurochem, 2007, 100 (2): 295-306. DOI: 10.1111/jnc.2007.100.issue-2.
[2] 胡学强. 多发性硬化[M]. 北京: 人民卫生出版社, 2012: 2.
[3] Horwitz NH. Lectures on the diseases of the nervous system. Jean Martin Charcot. Lectures on the localisation of cerebral and spinal diseases. Jean Martin Charcot[J]. Neurosurgery, 1995, 37 (5): 1022-1025. DOI: 10.1227/00006123-199511000-00028.
[4] Mohr DC, Hart SL, Julian L, Cox D, Pelletier D. Association between stressful life events and exacerbation inmultiple sclerosis: a meta-analysis[J]. BMJ, 2004, 328 (7442): 731. DOI: 10.1136/bmj.38041.724421.55.
[5] Yamout B, Itani S, Hourany R, Sibaii AM, Yaghi S. The effect of war stress on multiple sclerosis exacerbations and radiological disease activity[J]. J Neurol Sci, 2010, 288 (1-2): 42-44. DOI: 10.1016/j.jns.2009.10.012.
[6] Golan D, Somer E, Dishon S, Cuzin-Disegni L, Miller A. Impact of exposure to war stress on exacerbations of multiple sclerosis[J]. Ann Neurol, 2008, 64 (2): 143-148. DOI: 10.1002/ana.v64:2.
[7] Liu XJ, Ye HX, Li WP, Dai R, Chen D, Jin M. Relationship between psychosocial factors and onset of multiple sclerosis[J]. Eur Neurol, 2009, 62 (3): 130-136. DOI: 10.1159/000226428.
[8] 商永华, 蒋小玲, 林海谅, 程云帆. 生活事件对多发性硬化发病与复发的影响[J]. 中华临床医师杂志(电子版), 2012, 6 (7): 110-111.
[9] Mitsonis CI, Zervas IM, Mitropoulos PA, Dimopoulos NP, Soldatos CR, Potagas CM, Sfagos CA. The impact of stressful life events on risk of relapse in women with multiple sclerosis: A prospective study[J]. Eur Psychiat, 2008, 23 (7): 497-504. DOI: 10.1016/j.eurpsy.2008.06.003.
[10] Harpaz I, Abutbul S, Nemirovsky A, Gal R, Cohen H, Monsonego A. Chronic exposure to stress predisposes to higher autoimmune susceptibility in C57BL/6 mice:Glucocorticoids as a double-edged sword[J]. Eur J Immunol, 2013, 43 (3): 758-769. DOI: 10.1002/eji.201242613.
[11] 林海谅, 蒋小玲, 商永华. 应激对大鼠自身免疫性脑脊髓炎模型的影响[J]. 海南医学院学报, 2011, 17 (12): 1606-1608.
[12] Welsh CJ, Steelman AJ, Mi W, Young CR, Dean DD, Storts R, Welsh TH Jr, Meagher MW. Effects of stress on the immune response to Theiler's virus-implications for virus-induced autoimmunity[J]. Neuroimmunomodulation, 2010, 17 (3): 169-172. DOI: 10.1159/000258715.
[13] Flak JN, Myers B, Solomon MB, McKlveen JM, Krause EG, Herman JP. Role of paraventricular nucleus-projecting norepinephrine/epinephrine neurons in acute and chronic stress[J]. Eur J Neurosci, 2014, 39 (11): 1903-1911. DOI: 10.1111/ejn.12587.
[14] Melief J, de Wit SJ, van Eden CG, Teunissen C, Hamann J, Uitdehaag BM, Swaab D, Huitinga I. HPA axis activity in multiple sclerosis correlates with disease severity, lesion type and gene expression in normal-appearing white matter[J]. Acta Neuropathol, 2013, 126 (2): 237-249. DOI: 10.1007/s00401-013-1140-7.
[15] Karagkouni A, Alevizos M, Theoharides TC. Effect of stress on brain inflammation and multiple sclerosis[J]. Autoimmun Rev, 2013, 12 (10): 947-953. DOI: 10.1016/j.autrev.2013.02.006.
[16] Benou C, Wang Y, Imitola J, VanVlerken L, Chandras C, Karalis KP, Khoury SJ. Corticotropin-releasing hormone contributes to the peripheral inflammatory response in experimental autoimmune encephalomyelitis[J]. J Immunol, 2005, 174 (9): 5407-5413. DOI: 10.4049/jimmunol.174.9.5407.
[17] van Noort JM, Baker D, Amor S. Mechanisms in the development of multiple sclerosis lesions: reconciling autoimmune and neurodegenerative factors[J]. CNS Neurol Disord Drug Targets, 2012, 11 (5): 556-569. DOI: 10.2174/187152712801661293.
[18] Powell ND, Bailey MT, Mays JW, Stiner-Jones LM, Hanke ML, Padgett DA, Sheridan JF. Repeated social defeat activates dendritic cells and enhances Toll-like receptor dependent cytokine secretion[J]. Brain Behav Immun, 2009, 23 (2): 225-231. DOI: 10.1016/j.bbi.2008.09.010.
[19] Jung SH, Wang Y, Kim T, Tarr A, Reader B, Powell N, Sheridan JF. Molecular mechanisms of repeated social defeat-induced glucocorticoid resistance: Role of microRNA[J]. Brain Behav Immun, 2015, 44 : 195-206. DOI: 10.1016/j.bbi.2014.09.015.
[20] Brola W, Sobolewski P, Flaga S, Fudala M, Szczuchniak W, Stoiński J, Roso owska A, Wójcik J, Kapica-Topczewska K, Ryglewicz D. Prevalence and incidence of multiple sclerosis in central Poland, 2010-2014[J]. BMC Neurol, 2016, 16 (1): 134. DOI: 10.1186/s12883-016-0662-8.
[21] Voskuhl R. Sex differences in autoimmune diseases[J]. Biol Sex Differ, 2011, 2 (1): 1. DOI: 10.1186/2042-6410-2-1.
[22] Li XF, Knox AM, O'Byrne KT. Corticotrophin-releasing factor andstress-induced inhibitionof the gonadotrophin-releasing hormone pulse generator in the female[J]. Brain Res, 2010, 1364 : 153-163. DOI: 10.1016/j.brainres.2010.08.036.
[23] Park HJ, Park HS, Lee JU, Bothwell AL, Choi JM. Gender-specific differences in PPARγ regulation of follicular helper T cell responses with estrogen[J]. Sci Rep, 2016, 6 : 28495. DOI: 10.1038/srep28495.
[24] Hanke ML, Powell ND, Stiner LM, Bailey MT, Sheridan JF. Beta adrenergic blockade decreases the immunomodulatory effects of social disruption stress[J]. Brain Behav Immun, 2012, 26 (7): 1150-1159. DOI: 10.1016/j.bbi.2012.07.011.
[25] Jobe SO, Fling SN, Ramadoss J, Magness RR. A novel role for an endothelial adrenergic receptor system in mediating catecholestradiol-induced proliferation of uterine artery endothelial cells[J]. Hypertension, 2011, 58 (5): 874-881. DOI: 10.1161/HYPERTENSIONAHA.111.178046.
[26] Lélu K, Laffont S, Delpy L, Paulet PE, Périnat T, Tschanz SA, Pelletier L, Engelhardt B, Guéry JC. Estrogen receptor α signaling in T lymphocytes is required for estradiol-mediated inhibition of Th1 and Th17 cell differentiation and protection against experimental autoimmune encephalomyelitis[J]. J Immunol, 2011, 187 (5): 2386-2393. DOI: 10.4049/jimmunol.1101578.
[27] Papenfuss TL, Powell ND, McClain MA, Bedarf A, Singh A, Gienapp IE, Shawler T, Whitacre CC. Estriol generates tolerogenic dendritic cells in vivo that protect against autoimmunity[J]. J Immunol, 2011, 186 (6): 3346-3355. DOI: 10.4049/jimmunol.1001322.
[28] De Giglio L, Marinelli F, Prosperini L, Contessa GM, Gurreri F, Piattella MC, De Angelis F, Barletta VT, Tomassini V, Pantano P, Pozzilli C. Relationship between prolactin plasma levels and white matter volume in women with multiple sclerosis[J]. Mediators Inflamm, 2015, 2015 : 732539.
[29] Yates MA, Li Y, Chlebeck P, Proctor T, Vandenbark AA, Offner H. Progesterone treatment reduces disease severity andincreases IL-10 in experimental autoimmune encephalomyelitis[J]. J Neuroimmunol, 2010, 220 (1-2): 136-139. DOI: 10.1016/j.jneuroim.2010.01.013.
[30] Quintero OL, Amador-Patarroyo MJ, Montoya-Ortiz G, Rojas-Villarraga A, Anaya JM. Autoimmune disease andgender: plausible mechanisms for the female predominance of autoimmunity[J]. J Autoimmun, 2012, 38 (2-3): J109-J119. DOI: 10.1016/j.jaut.2011.10.003.
[31] Giatti S, Rigolio R, Romano S, Mitro N, Viviani B, Cavaletti G, Caruso D, Garcia-Segura LM, Melcangi RC. Dihydrotestosterone as a protective agent in chronic experimental autoimmune encephalomyelitis[J]. Neuroendocrinology, 2015, 101 (4): 296-308. DOI: 10.1159/000381064.
[32] Gu S, Wang W, Wang F, Huang JH. Neuromodulator and emotion biomarker for stress induced mental disorders[J]. Neural Plast, 2016, 2016 : 2609128.
[33] Brosnan CF, Goldmuntz EA, Cammer W, Factor SM, Bloom BR, Norton WT. Prazosin, an alpha-adrenergic receptorantagonist, suppresses experimental autoimmune encephalomyelitisin the Lewis rat[J]. ProcNatlAcadSciUSA, 1985, 82 (17): 5915-5919. DOI: 10.1073/pnas.82.17.5915.
[34] White SR, Black PC, Samathanam GK, Paros KC. Prazosin suppresses development of axonaldamage in rats inoculated for experimental allergic encephalomyelitis[J]. J Neuroimmunol, 1992, 39 (3): 211-218. DOI: 10.1016/0165-5728(92)90255-J.
[35] Zhang ZW, Qin XY, Che FY, Xie G, Shen L, Bai YY. Effects of beta 2 adrenergic agonists on axonal injury and mitochondrial metabolism in experimental autoimmuneencephalomyelitis rats[J]. Genet Mol Res, 2015, 14 (4): 13572-13581. DOI: 10.4238/2015.October.28.17.
[36] Wiegmann K, Muthyala S, Kim DH, Arnason BG, Chelmicka-Schorr E. Beta-adrenergic agonists suppress chronic/relapsing experimental allergic encephalomyelitis (CREAE) inLewis rats[J]. J Neuroimmunol, 1995, 56 (2): 201-206. DOI: 10.1016/0165-5728(94)00153-F.
[37] Felten DL, Felten SY, Bellinger DL, Carlson SL, Ackerman KD, Madden KS, Olschowki JA, Livnat S. Noradrenergic sympathetic neural interactions with the immune system: structure and function[J]. Immunol Rev, 1987, 100 : 225-260. DOI: 10.1111/imr.1987.100.issue-1.
[38] Mills PJ, Diusdale JE. The promise of adrenergic receptorsstudies inpsychophysilogc research: applications, limitations, and progress[J]. Psychosom Med, 1993, 55 (5): 448-457. DOI: 10.1097/00006842-199309000-00008.
[39] Gold SM, Mohr DC, Huitinga I, Flachenecker P, Sternberg EM, Heesen C. The role of stress-response systems forthe pathogenesis and progression of MS[J]. Trends Immunol, 2005, 26 (12): 644-652. DOI: 10.1016/j.it.2005.09.010.
[40] Yang JH, Lee EO, Kim SE, Suh YH, Chong YH. Norepinephrine differentially modulates the innate inflammatory response provoked by amyloid-β peptide via action at β-adrenoceptors and activation of cAMP/PKA pathway in human THP-1 macrophages[J]. Exp Neurol, 2012, 236 (2): 199-206. DOI: 10.1016/j.expneurol.2012.05.008.
[41] Bedoui S, Miyake S, Straub RH, von Hörsten S, Yamamura T. More sympathy for autoimmunity withneuropeptide Y?[J]. Trends Immunol, 2004, 25 (10): 508-512. DOI: 10.1016/j.it.2004.08.005.
[42] Lovett-Racke AE, Yang Y, Racke MK. Th1 versus Th17: Are T cell cytokinesrelevant in multiple sclerosis?[J]. Biochim Biophys Acta, 2011, 1812 (2): 246-251. DOI: 10.1016/j.bbadis.2010.05.012.
[43] Mi W, Young CR, Storts RW, Steelman AJ, Meagher MW, Welsh CJ. Restraint stress facilitates systemic disseminationof Theiler's virus and alters pathogenicity[J]. Microb Pathogen, 2006, 41 (4-5): 133-143. DOI: 10.1016/j.micpath.2006.01.008.
[44] Mi W, Belyavskyi M, Johnson RR, Sieve AN, Storts R, Meagher MW, Welsh CJ. Alterationsin chemokine expression in Theiler' svirus infection and restraint stress[J]. Neuroimmunology, 2004, 151 (1-2): 103-115. DOI: 10.1016/j.jneuroim.2004.02.010.
[45] 何云, 杨群, 许本柯. 早期应激诱导神经元树突棘形态结构重塑研究进展[J]. 新医学, 2015, 45 (5): 279-282.