文章快速检索     高级检索
  新医学  2017, Vol. 48 Issue (10): 692-696  DOI: 10.3969/j.issn.0253-9802.2017.10.004
0

引用本文 [复制中英文]

钱小庆, 张民杰. PD-1/PD-L1在脓毒症免疫中的作用[J]. 新医学, 2017, 48(10): 692-696.
Qian Xiaoqing, Zhang Minjie. Effect of PD-1/PD-L1 on the immunity in sepsis[J]. Journal of New Medicine, 2017, 48(10): 692-696.

通讯作者

张民杰

文章历史

收稿日期:2017-05-13
PD-1/PD-L1在脓毒症免疫中的作用
钱小庆, 张民杰     
510630 广州, 暨南大学附属第一医院ICU
摘要: 脓毒症是ICU患者死亡的主要原因之一。既往的研究表明脓毒症不仅会引起过度的炎症反应,还会导致免疫系统功能障碍和抗微生物能力受损。最近的研究表明在早期高炎症反应状态下存活的患者,大部分进入免疫抑制阶段,更容易继发感染,增加病死率。程序性死亡分子-1(PD-1)及其配体(PD-L1)是介导机体免疫反应的负性调节因子,近几年PD-1/PD-L1在脓毒症中的作用受到广泛关注,在脓毒症的治疗中,无论是在动物实验还是临床试验,抗PD-1/PD-L1抗体均显示出很好的前景。该文将PD-1/PD-L1在脓毒症发展中的作用进行了归纳。
关键词: 程序性死亡分子-1    程序性死亡分子-1配体    脓毒症    免疫抑制    
Effect of PD-1/PD-L1 on the immunity in sepsis
Qian Xiaoqing, Zhang Minjie     
Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
Corresponding author: Zhang Minjie
Abstract: Sepsis is one of primary causes of death in the Intensive Care Unit. Previous studies have demonstrated that sepsis not only provokes excessive inflammatory response, but also leads to immune system dysfunction and impaired antimicrobial ability. Recent research has suggested that a majority of patients surviving in the early stage of hyperinflammatory state proceed to the immunosuppressive stage and are likely to suffer from secondary infection and increased mortality rate. Programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) are negative regulatory factors that mediate the immune response. In recent years, the role of PD-1/PD-L1 in sepsis has captivated widespread attention.Anti-PD-1/PD-L1 antibodies have been proven to be efficacious in both animal studies and clinical trials. The role of PD-1/PD-L1 in the progression of sepsis is briefly summarized.
Key words: Programmed death-1    Programmed death ligand-1    Sepsis    Immunosuppression    

脓毒症是指由感染引起的SIRS。脓毒症具有发病率高和病死率高的特点,目前仍是ICU中非冠状动脉危重患者最常见的病死原因[1]。过去的观点认为脓毒症初始为高炎症阶段(即SIRS),随后是抗炎或免疫抑制阶段(即抗炎症反应综合征,CARS)[2-3]。但新的研究结果表明促炎相和抗炎相可以发生在脓毒症期间的多个时间点,因此这种先促炎后抗炎的观点已受到众多学者的质疑[4]。许多研究已经揭示了免疫抑制在脓毒症发病机制中起着重要的作用[5-6]。目前,脓毒症期间的免疫抑制已成为世界性研究热点。对死于脓毒症的患者进行尸检表明其机体确实存在显著的免疫抑制,临床前期研究同样支持此类发现[7-8]。最近的研究显示程序性死亡分子-1(PD-1) 及其配体(PD-L1) 在脓毒症免疫抑制中发挥着重要作用,而且抗PD-1/PD-L1抗体可以抑制淋巴细胞凋亡,改善T淋巴细胞耗竭和单核细胞功能,因而采用PD-1/PD-L1治疗可能成为一种有前景的改善脓毒症患者预后的方法。

一、PD-1/PD-L1简介

1992年,Ishida等[9]首次分离出PD-1基因并命名。PD-1是一种新定义的共抑制受体,主要表达在活化的CD4+和CD8+ T淋巴细胞表面。PD-1具有2个主要配体:PD-L1(B7-H1) 和PD-L2(B7-DC),PD-L2主要表达在免疫细胞上,目前的相关研究较少,而PD-L1在造血和非造血细胞中广泛表达,包括T淋巴细胞、B淋巴细胞、树突状细胞(DC)、巨噬细胞、内皮细胞、上皮细胞、胰岛细胞、成纤维细胞和网状细胞[10]。PD-1及其配体通过调节T淋巴细胞的活化和耐受而在持续抗原刺激时发挥抑制作用。PD-1/PD-L1在自身免疫、肿瘤免疫、移植免疫、过敏和缺血/再灌注损伤的调节中起关键作用[11]。最近有研究表明PD-1/PD-L1通路在宿主和致病微生物之间发挥着重要作用,其作用是为了抵抗免疫应答。

二、PD-1/PD-L1在脓毒症免疫中的作用 1. PD-L1在嗜中性粒细胞上的表达

最近的研究表明,嗜中性粒细胞具有抗原递呈功能,可通过表达PD-L1来抑制淋巴细胞的增殖[12]。在过去的10年中,学者们已经发现在嗜中性粒细胞表面上有PD-L1的表达。随后的研究表明中性粒细胞在受INF-γ和粒细胞-巨噬细胞集落刺激因子刺激后,其PD-L1表达上调[13]。体外研究表明嗜中性粒细胞可通过表达PD-L1抑制淋巴细胞介导的炎症反应。最近的一项研究表明,在脓毒症小鼠体内中性粒细胞PD-L1表达升高,并与脓毒症的不良预后显著相关[14]。更多的研究表明嗜中性粒细胞作为抗原递呈细胞参与适应性免疫过程。嗜中性粒细胞与淋巴细胞的直接接触可能通过巨噬细胞-1抗原抑制淋巴细胞的增殖[15]。嗜中性粒细胞对淋巴细胞的这种抑制作用非常重要,因为它们是外周血中最丰富的白细胞。Wang等[12]的研究同样表明PD-L1在脓毒症患者以及脓毒症模型小鼠嗜中性粒细胞表面的表达均有增加,嗜中性粒细胞上PD-L1表达的增加与脓毒症患者疾病严重程度以及预后具有相关性。PD-L1+嗜中性粒细胞可以是具有特异性表型和趋化性受损的抑制亚型,在脓毒症期间可诱导淋巴细胞的凋亡[16]。中性粒细胞PD-L1可能是诊断脓毒症诱导免疫抑制的潜在生物标志物[12]

2. PD-1/PD-L1与淋巴细胞功能障碍的关系

脓毒症过程会引起CD4+和CD8+ T淋巴细胞的凋亡,将革兰阴性细菌注射到小鼠体内会使其胸腺中的CD4+和CD8+T淋巴细胞发生凋亡[12]。小鼠败血症模型中各种器官包括脾、胸腺、结肠、回肠、肺和骨骼肌中存在淋巴细胞的广泛凋亡,且骨髓中的B220+淋巴细胞和胸腺中的未成熟T淋巴细胞亦存在凋亡[16]。随后的许多临床前研究为脓毒症诱导的CD4+和CD8+T淋巴细胞凋亡提供了确切的证据[8, 17-18]。此外,脓毒症患者的尸检结果也揭示了其脾脏和淋巴结中CD4+、CD8+ T和B淋巴细胞群广泛丧失[7, 19]。除了凋亡,T淋巴细胞耗竭亦在脓毒症诱导免疫抑制的病理生理过程中发挥着关键作用[8, 17, 20]。T淋巴细胞耗竭通常发生在持续的抗原暴露和(或)炎症情况下[21]。高抗原负荷和感染引起的炎症是脓毒症的特征[22]。因此,T淋巴细胞在受长期持续刺激后其细胞表面抑制性受体的表达会增加。PD-1/PD-L1是脓毒症的主要抑制性受体-配体之一。机体受到刺激时,CD4+和CD8+ T淋巴细胞表面上的PD-1表达会增加以防止T淋巴细胞过度活化[21, 23]。许多临床前期研究显示在脓毒症期间PD-1和PD-L1的表达随时间的延长持续增加。在动物模型中,已经证实脓毒症会增加PD-1在T淋巴细胞上的表达,而且PD-L1的表达增加与T淋巴细胞凋亡的增加和病死率相关[24-26]。脓毒症可能通过PD-1的表达引起淋巴细胞的凋亡导致免疫抑制,而淋巴细胞的功能障碍又可加重脓毒症患者的病情,并形成恶性循环[27]。如何阻断这种途径已经成为未来研究的主要方向。

3. PD-1/PD-L1与单核细胞功能障碍的关系

除了淋巴细胞的凋亡外,单核细胞的功能障碍在脓毒症免疫抑制期间同样扮演着重要角色。在细菌入侵机体时,单核细胞可以产生抗体以及炎症介质来抵御感染。然而,在脓毒症免疫抑制期间,单核细胞的功能发生障碍,抗原递呈能力也因为HLA-DR的表达下降而减弱[28]。还有研究表明,脓毒症期间单核细胞分泌促炎因子的能力下降[29]。Zhang等[30]发现,与假手术对照组相比,PD-1/PD-L1在脓毒症小鼠单核细胞上的表达上调。Huang等[26]的研究表明,脓毒性休克患者单核细胞上PD-1的表达高于健康志愿者。另一项前瞻性临床研究还表明,脓毒症导致CD4+和CD8+ T淋巴细胞和单核细胞上PD-L1的表达增加,单核细胞上的PD-L1尚为脓毒性休克患者28 d死亡的独立预测因子[30-31]。由此可以推论单核细胞上PD-1/PD-L1表达增加可能是导致单核细胞功能障碍的重要机制之一,当单核细胞功能出现障碍后,脓毒症患者更容易继发其他感染,从而增加患者病死率[32]

4. PD-1/PD-L1与DC功能障碍的关系

DC数量的减少是脓毒症后免疫抑制和机会性感染的主要原因,并且与不良预后密切相关[33]。最近的研究表明,DC的数量在脓毒症过程中显著减少,并且DC可促进调节性T淋巴细胞(Treg)和抑制性T淋巴细胞的增殖和分化,这是免疫缺陷的主要原因[34-35]。Liu等[36]通过脓毒症小鼠模型发现PD-1和PD-L1均可在DC表面表达,并且在整个脓毒症引起的MODS病程中呈现增加-减少-增加的趋势。在疾病进程的早期,脾脏中DC被抗原刺激后,成熟的DC激活淋巴细胞以产生免疫应答,在这个阶段DC的免疫激活是主要的。同时,PD-1和PD-L1高度表达,表明尽管DC能发挥免疫激活作用,但其也具有抑制免疫活性过度表达的负性调节作用,因此随着时间延长DC的免疫激活功能下降。此外,PD-1和PD-L1的表达持续增加,表明早期活动的DC已经转化为耐受性DC,在MODS阶段,耐受性DC占优势[36]。耐受性DC和主要组织相容性复合体-Ⅱ的共刺激分子的表达减少,而PD-1和PD-L1的表达上调。DC可以通过PD-1和PD-L1抑制T淋巴细胞功能发挥免疫负性调节作用,从而诱导免疫抑制的形成,并导致MODS的发生。PD-1/PD-L1在DC上发挥调节免疫的作用,导致DC功能障碍,抗原递呈能力下降,同时尚导致淋巴细胞功能障碍,促使脓毒症进入免疫抑制阶段,进而增加机会性感染。

三、抗PD-1/PD-L1抗体在脓毒症治疗中的应用

以往学者们认为脓毒症早期处于过度免疫激活状态,但一些临床研究显示针对这个阶段的抗免疫治疗取得的效果甚微,这使得学者们开始寻找新的治疗脓毒症的方法。近些年抗PD-1/PD-L1抗体在治疗肿瘤方面取得了成功,FDA已批准PD-1单克隆抗体用于治疗人类癌症[37-39]。由于肿瘤免疫与脓毒症免疫存在相似性,包括免疫抑制细胞因子IL-10、Treg、骨髓衍生的抑制细胞的增加和与T淋巴细胞耗竭有关的PD-1和PD-L1的表达[38-39]。已有大量学者开始探索PD-1/PD-L1与脓毒症的关系,并尝试用抗PD-1/PD-L1抗体治疗脓毒症,临床前期和临床试验均表现出良好的前景。Zhang等[30]的研究表明使用抗PD-1抗体可以降低T淋巴细胞凋亡和改善免疫效应功能。不同的实验研究表明,阻断PD-1途径可防止细胞凋亡性死亡,恢复宿主免疫功能并降低细菌和真菌脓毒症相关模型的病死率[24, 26, 40-41]。但以上研究多数为脓毒症模型和体外实验,抗PD-1/PD-L1抗体在脓毒症患者中的治疗仍需要大量的临床试验来验证。

另外有研究表明抗PD-1/PD-L1抗体联合IL-7也能减少淋巴细胞的凋亡和改善T淋巴细胞耗竭[8, 24-25, 41-42]。抗PD-1/PD-L1抗体或IL-7可以与干扰素-γ联合应用于单核细胞和T淋巴细胞功能障碍的HLA-DR表达减少的患者中。一些有关小鼠的研究表明,PD-1缺陷可增加自身免疫性疾病的发病率,例如狼疮样综合征、1型糖尿病和扩张型心肌病等[43]。这种不良反应通常发生在长期阻断PD-1/PD-L1途径时[44]。因此,在脓毒症免疫治疗中长时间使用抗PD-1/PD-L1抗体时应该谨慎,并非所有的脓毒症患者均能使用抗PD-1/PD-L1抗体治疗,必须对患者的疾病状态进行分层,处于免疫抑制状态的患者才是应用该抗体的主要群体。关于PD-1/PD-L1在脓毒症中各细胞表面表达的具体机制尚未明确,需要进一步研究。同时抗PD-1/PD-L1抗体在临床治疗脓毒症中的有效性及安全性也需要大量的临床试验来验证。目前已有的研究表明抗PD-1/PD-L1抗体在脓毒症治疗方面具有很好的前景[45]

四、结论

尽管近年来有关脓毒症发病机制的研究已经取得了较大进展,但其根本机制还远未澄清。对PD-1/PD-L1在脓毒症中作用的研究,有助于进一步阐明脓毒症的发病机制,适当应用相关的手段可达到治疗和缓解脓毒症患者预后的目的,未来应进行更多的临床试验来验证抗PD-1/PD-L1抗体在脓毒症治疗中的有效性及安全性。

参考文献
[1]
Mayr FB, Yende S, Angus DC. Epidemiology of severe sepsis[J]. Virulence, 2014, 5(1): 4-11. DOI:10.4161/viru.27372
[2]
Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis[J]. N Engl J Med, 2003, 348(2): 138-150. DOI:10.1056/NEJMra021333
[3]
管向东, 陈敏英. 严重感染导致多器官功能障碍综合征的防治[J]. 新医学, 2008, 39(3): 149-151.
[4]
Boomer JS, Green JM, Hotchkiss RS. The changing immune system in sepsis:is individualized immuno-modulatory therapy the answer? Virulence, 2014, 5(1):45-56[J]. Virulence, 2014, 5(1): 45-56. DOI:10.4161/viru.26516
[5]
Delano MJ, Ward PA. Sepsis-induced immune dysfunction:can immune therapies reduce mortality?[J]. J Clin Invest, 2016, 126(1): 23-31. DOI:10.1172/JCI82224
[6]
李奇林, 赖荣德. 多器官功能障碍综合征的概述[J]. 新医学, 2008, 39(3): 148-149.
[7]
Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, Bricker TL, Jarman SD, Kreisel D, Krupnick AS, Srivastava A, Swanson PE, Green JM, Hotchkiss RS. Immunosuppression in patients who die of sepsis and multiple organ failure[J]. JAMA, 2011, 306(23): 2594-2605. DOI:10.1001/jama.2011.1829
[8]
Unsinger J, Burnham CA, McDonough J, Morre M, Prakash PS, Caldwell CC, Dunne WM, Hotchkiss RS. Interleukin-7 ameliorates immune dysfunction and improves survival in a 2-hit model of fungal sepsis[J]. J Infect Dis, 2012, 206(4): 606-616. DOI:10.1093/infdis/jis383
[9]
Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death[J]. EMBO J, 1992, 11(11): 3887-3895.
[10]
Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection[J]. Nat Immunol, 2007, 8(3): 239-245. DOI:10.1038/ni1443
[11]
Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity[J]. Annu Rev Immunol, 2008, 26: 677-704. DOI:10.1146/annurev.immunol.26.021607.090331
[12]
Wang JF, Li JB, Zhao YJ, Yi WJ, Bian JJ, Wan XJ, Zhu KM, Deng XM. Up-regulation of programmed cell death 1 ligand 1 on neutrophils may be involved in sepsis-induced immunosuppression:an animal study and a prospective case-control study[J]. Anesthesiology, 2015, 122(4): 852-863. DOI:10.1097/ALN.0000000000000525
[13]
Bankey PE, Banerjee S, Zucchiatti A, De M, Sleem RW, Lin CF, Miller-Graziano CL, De AK. Cytokine induced expression of programmed death ligands in human neutrophils[J]. Immunol Lett, 2010, 129(2): 100-107. DOI:10.1016/j.imlet.2010.01.006
[14]
Huang X, Chen Y, Chung CS, Yuan Z, Monaghan SF, Wang F, Ayala A. Identification of B7-H1 as a novel mediator of the innate immune/proinflammatory response as well as a possible myeloid cell prognostic biomarker in sepsis[J]. J Immunol, 2014, 192(3): 1091-1099. DOI:10.4049/jimmunol.1302252
[15]
Pillay J, Kamp VM, van Hoffen E, Visser T, Tak T, Lammers JW, Ulfman LH, Leenen LP, Pickkers P, Koenderman L. A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1[J]. J Clin Invest, 2012, 122(1): 327-336. DOI:10.1172/JCI57990
[16]
Patera AC, Drewry AM, Chang K, Beiter ER, Osborne D, Hotchkiss RS. Frontline science:defects in immune function in patients with sepsis are associated with PD-1 or PD-L1 expression and can be restored by antibodies targeting PD-1 or PD-L1[J]. J Leukoc Biol, 2016, 100(6): 1239-1254. DOI:10.1189/jlb.4HI0616-255R
[17]
Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis:a novel understanding of the disorder and a new therapeutic approach[J]. Lancet Infect Dis, 2013, 13(3): 260-268. DOI:10.1016/S1473-3099(13)70001-X
[18]
Inoue S, Unsinger J, Davis CG, Muenzer JT, Ferguson TA, Chang K, Osborne DF, Clark AT, Coopersmith CM, McDunn JE, Hotchkiss RS. IL-15 prevents apoptosis, reverses innate and adaptive immune dysfunction, and improves survival in sepsis[J]. J Immunol, 2010, 184(3): 1401-1409. DOI:10.4049/jimmunol.0902307
[19]
Hotchkiss RS, Tinsley KW, Swanson PE, Schmieg RE, Hui JJ, Chang KC, Osborne DF, Freeman BD, Cobb JP, Buchman TG, Karl IE. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans[J]. J Immunol, 2001, 166(11): 6952-6963. DOI:10.4049/jimmunol.166.11.6952
[20]
Schietinger A, Greenberg PD. Tolerance and exhaustion:defining mechanisms of T cell dysfunction[J]. Trends Immunol, 2014, 35(2): 51-60. DOI:10.1016/j.it.2013.10.001
[21]
Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion[J]. Nat Rev Immunol, 2015, 15(8): 486-499. DOI:10.1038/nri3862
[22]
Otto GP, Sossdorf M, Claus RA, R del J, Menge K, Reinhart K, Bauer M, Riedemann NC. The late phase of sepsis is characterized by an increased microbiological burden and death rate[J]. Crit Care, 2011, 15(4): R183. DOI:10.1186/cc10332
[23]
Crawford A, Wherry EJ. The diversity of costimulatory and inhibitory receptor pathways and the regulation of antiviral T cell responses[J]. Curr Opin Immunol, 2009, 21(2): 179-186. DOI:10.1016/j.coi.2009.01.010
[24]
Brahmamdam P, Inoue S, Unsinger J, Chang KC, McDunn JE, Hotchkiss RS. Delayed administration of anti-PD-1 antibody reverses immune dysfunction and improves survival during sepsis[J]. J Leukoc Biol, 2010, 88(2): 233-240. DOI:10.1189/jlb.0110037
[25]
Zhang Y, Zhou Y, Lou J, Li J, Bo L, Zhu K, Wan X, Deng X, Cai Z. PD-L1 blockade improves survival in experimental sepsis by inhibiting lymphocyte apoptosis and reversing monocyte dysfunction[J]. Crit Care, 2010, 14(6): R220. DOI:10.1186/cc9354
[26]
Huang X, Venet F, Wang YL, Lepape A, Yuan Z, Chen Y, Swan R, Kherouf H, Monneret G, Chung CS, Ayala A. PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis[J]. Proc Natl Acad Sci U S A, 2009, 106(15): 6303-6308. DOI:10.1073/pnas.0809422106
[27]
Li W, Tu J, Liu X, Yang W. Farnesyltransferase inhibitor FTI-277 inhibits PD-L1 expression on septic spleen lymphocytes and promotes spleen lymphocyte activation. Clin Exp Immunol, 2017 May 30. doi:10.1111/cei.12995.[Epubaheadofprint].
[28]
Le TY, Pangault C, Amiot L, Guilloux V, Tribut O, Arvieux C, Camus C, Fauchet R, Thomas R, Drénou B. Monocyte human leukocyte antigen-DR transcriptional downregulation by cortisol during septic shock[J]. Am J Respir Crit Care Med, 2004, 169(10): 1144-1151. DOI:10.1164/rccm.200309-1329OC
[29]
Monneret G, Lepape A, Voirin N, Bohé J, Venet F, Debard AL, Thizy H, Bienvenu J, Gueyffier F, Vanhems P. Persisting low monocyte human leukocyte antigen-DR expression predicts mortality in septic shock[J]. Intensive Care Med, 2006, 32(8): 1175-1183. DOI:10.1007/s00134-006-0204-8
[30]
Zhang Y, Li J, Lou J, Zhou Y, Bo L, Zhu J, Zhu K, Wan X, Cai Z, Deng X. Upregulation of programmed death-1 on T cells and programmed death ligand-1 on monocytes in septic shock patients[J]. Crit Care, 2011, 15(1): R70. DOI:10.1186/cc10059
[31]
Shao R, Fang Y, Yu H, Zhao L, Jiang Z, Li CS. Monocyte programmed death ligand-1 expression after 3-4 days of sepsis is associated with risk stratification and mortality in septic patients:a prospective cohort study[J]. Crit Care, 2016, 20(1): 124. DOI:10.1186/s13054-016-1301-x
[32]
Guignant C, Lepape A, Huang X, Kherouf H, Denis L, Poitevin F, Malcus C, Cheron A, Allaouchiche B, Gueyffier F, Ayala A, Monneret G, Venet F. Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients[J]. Crit Care, 2011, 15(2): R99. DOI:10.1186/cc10112
[33]
Wang HW, Yang W, Gao L, Kang JR, Qin JJ, Liu YP, Lu JY. Adoptive transfer of bone marrow-derived dendritic cells decreases inhibitory and regulatory T-cell differentiation and improves survival in murine polymicrobial sepsis[J]. Immunology, 2015, 145(1): 50-59. DOI:10.1111/imm.12423
[34]
Faivre V, Lukaszewicz AC, Alves A, Charron D, Payen D, Haziot A. Human monocytes differentiate into dendritic cells subsets that induce anergic and regulatory T cells in sepsis[J]. PLoS One, 2012, 7(10): e47209. DOI:10.1371/journal.pone.0047209
[35]
Pastille E, Didovic S, Brauckmann D, Rani M, Agrawal H, Schade FU, Zhang Y, Flohé SB. Modulation of dendritic cell differentiation in the bone marrow mediates sustained immunosuppression after polymicrobial sepsis[J]. J Immunol, 2011, 186(2): 977-986. DOI:10.4049/jimmunol.1001147
[36]
Liu Q, Lu JY, Wang XH, Qu BJ, Li SR, Kang JR. Changes in the PD-1 and PD-L1 expressions of splenic dendritic cells in multiple-organ dysfunction syndrome mice and their significance[J]. Genet Mol Res, 2014, 13(3): 7666-7672. DOI:10.4238/2014.September.26.4
[37]
Plimack ER, Bellmunt J, Gupta S, Berger R, Chow LQ, Juco J, Lunceford J, Saraf S, Perini RF, O'Donnell PH. Safety and activity of pembrolizumab in patients with locally advanced or metastatic urothelial cancer (KEYNOTE-012):a non-randomised, open-label, phase 1b study[J]. Lancet Oncol, 2017, 18(2): 212-220. DOI:10.1016/S1470-2045(17)30007-4
[38]
Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbé C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ. Improved survival with ipilimumab in patients with metastatic melanoma[J]. N Engl J Med, 2010, 363(8): 711-723. DOI:10.1056/NEJMoa1003466
[39]
Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer[J]. N Engl J Med, 2012, 366(26): 2443-2454. DOI:10.1056/NEJMoa1200690
[40]
Lázár-Molnár E, Gácser A, Freeman GJ, Almo SC, Nathenson SG, Nosanchuk JD. The PD-1/PD-L costimulatory pathway critically affects host resistance to the pathogenic fungus Histoplasma capsulatum[J]. Proc Natl Acad Sci USA, 2008, 105(7): 2658-2663. DOI:10.1073/pnas.0711918105
[41]
Chang KC, Burnham CA, Compton SM, Rasche DP, Mazuski RJ, McDonough JS, Unsinger J, Korman AJ, Green JM, Hotchkiss RS. Blockade of the negative co-stimulatory molecules PD-1 and CTLA-4 improves survival in primary and secondary fungal sepsis[J]. Crit Care, 2013, 17(3): R85. DOI:10.1186/cc12711
[42]
Unsinger J, McGlynn M, Kasten KR, Hoekzema AS, Watanabe E, Muenzer JT, McDonough JS, Tschoep J, Ferguson TA, McDunn JE, Morre M, Hildeman DA, Caldwell CC, Hotchkiss RS. IL-7 promotes T cell viability, trafficking, and functionality and improves survival in sepsis[J]. J Immunol, 2010, 184(7): 3768-3779. DOI:10.4049/jimmunol.0903151
[43]
Okazaki T, Honjo T. PD-1 and PD-1 ligands:from discovery to clinical application[J]. Int Immunol, 2007, 19(7): 813-824. DOI:10.1093/intimm/dxm057
[44]
Patil NK, Bohannon JK, Sherwood ER. Immunotherapy:a promising approach to reverse sepsis-induced immunosuppression[J]. Pharmacol Res, 2016, 111: 688-702. DOI:10.1016/j.phrs.2016.07.019
[45]
Rudick CP, Cornell DL, Agrawal DK. Single versus combined immunoregulatory approach using PD-1 and CTLA-4 modulators in controlling sepsis[J]. Expert Rev Clin Immunol, 2017, 13(9): 907-919. DOI:10.1080/1744666X.2017.1357469