文章快速检索     高级检索
  新医学  2018, Vol. 49 Issue (1): 36-41  DOI: 10.3969/j.issn.0253-9802.2018.01.008
0

引用本文 [复制中英文]

靳松, 黄爱军, 林昆, 彭建强, 李亚杰, 邹学农. miR-124靶向抑制NFATc1调控小鼠C3H10T1 /2细胞软骨分化的研究[J]. 新医学, 2018, 49(1): 36-41.
Jin Song, Huang Aijun, Lin Kun, Peng Jianqiang, Li Yajie, Zou Xuenong. MicroRNA-124 regulates chondrogeneic differentiation of C3H10T1/2 cells in mice by inhibiting NFATc1[J]. Journal of New Medicine, 2018, 49(1): 36-41.

基金项目

广东省自然科学基金(2016A030313031);深圳市科技创新委员会基金(JCYJ2015040214506008)

通讯作者

靳松, E-mail:jingso@163.com

文章历史

收稿日期:2017-08-20
miR-124靶向抑制NFATc1调控小鼠C3H10T1 /2细胞软骨分化的研究
靳松, 黄爱军, 林昆, 彭建强, 李亚杰, 邹学农     
518033 深圳,中山大学附属第八医院骨科(靳松,黄爱军,林昆,彭建强,李亚杰);510080 广州,中山大学附属第一医院骨科(邹学农)
摘要: 目的 研究miR-124是否通过调控预测的靶基因活化T细胞核因子c1 (NFATc1)表达调节小鼠C3H10T1/2细胞的软骨分化。方法 培养C3H10T1/2细胞,行软骨诱导分化,采用实时定量PCR和蛋白免疫印迹法检测NFATc1和软骨标记基因Aggrecan、CollagenⅡ、Collagen X mRNA及蛋白的表达水平。使用在线靶基因预测软件预测NFATc1 mRNA的3'端非翻译区(3’UTR)结合位点,构建NFATc1 3'UTR野生型及突变型的荧光素酶报告载体,检测双荧光素酶报告基因,观察miR-124对NFATc1 3'UTR荧光素酶活性的影响。转染miR-124模拟物或抑制物并进行软骨诱导,观察miR-124对NFATc1的调控作用。结果 与诱导前比较,成软骨诱导组软骨分化相关基因Aggrecan、Col2a1和Col10a1 mRNA表达水平升高(P均<0.01);Sox 9和NFATc1 mRNA表达水平随着软骨分化进展而增加(P均<0.001);Col2a1、Sox 9和NFATc1蛋白呈逐渐增强表达,而肥厚性标记Col10a1蛋白显示较稳定表达。NFATc1 mRNA的3'UTR与miR-124的种子区存在理论上的互补碱基配对序列。转染NFATc1野生型质粒的C3H10T1/2细胞中,加入miR-124模拟物者的荧光素酶活性低于加入miR-124抑制物者,加入miR-124抑制物者的蛋白表达强于加入miR-124模拟物者(P均<0.05);转染NFATc1突变型质粒的C3H10T1/2细胞中,加入miR-124模拟物与加入miR-124抑制物的荧光素酶活性无变化(P>0.05)。蛋白免疫印迹法与实时定量PCR结果均显示,转染miR-124组与si-NFATc1组的NFATc1表达水平低于Control组(P均<0.01),miR-124组与si-NFATc1组的NFATc1表达水平相近(P>0.05)。过表达miR-124后,NFATc1大约降低了60%,而这种降低可被miR-124抑制物逆转。转染NFATc1野生型质粒的miR-124模拟物组的NFATc1荧光素酶活性减低(P均<0.05),转染NFATc1突变型质粒的miR-124模拟物组NFATc1荧光素酶活性无变化(P均>0.05)。结论 miR-124通过抑制靶基因NFATc1的表达调控C3H10T1/2细胞软骨分化。
关键词: 微小核糖核酸-124    骨髓间充质干细胞    软骨分化    活化T细胞核因子c1    
MicroRNA-124 regulates chondrogeneic differentiation of C3H10T1/2 cells in mice by inhibiting NFATc1
Jin Song, Huang Aijun, Lin Kun, Peng Jianqiang, Li Yajie, Zou Xuenong     
Department of Spinal Surgery, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518033, China
Corresponding author: Jin Song, E-mail:jingso@163.com
Abstract: Objective To investigate whether microRNA-124(miR-124) regulates the chondrogeneic differentiation of C3H10T1/2 cells in mice by modulating the expression of target gene of NFATc1. Methods C3H10T1/2 cells were cultured and subject to the induction of chondrogeneic differentiation. The expression of nuclear factor of activated T-cells 1(NFATc1), chondrogenic marker genes of Aggrecan, Collagen Ⅱ, Collagen X at the mRNA and protein levels were measured by real-time quantitative PCR and Western blot, respectively. Online software was adopted to predict the binding site of 3'untranslated region (3'UTR) of NFATc1 mRNA. The wild and mutant luciferase reporter vectors of NFATc1 3' UTR were constructed. The dual-luciferase reporter genes were detected. The effect of miR-124 upon the activity of NFATc1 3' UTR luciferase was evaluated. C3H10T1/2 cells were transfected with miR-124 mimics or inhibitors to induce chondrogeneic differentiation. The regulating effect of miR-124 upon NFATc1 was observed. Results After induction, the expression levels of Aggrecan, Col2a1 and Col10a1 mRNA were significantly up-regulated (all P < 0.01). The expression levels of Sox 9 and NFATc1 mRNA were dramatically up-regulated along with the chondrogeneic differentiation (all P < 0.001). Western blot revealed that the expression levels of Col2a1, Sox 9 and NFATc1 proteins were gradually up-regulated during the induction process in the osteogenic control group, whereas the Col10a1 protein was stably expressed. Targetscan and miRanda online software demonstrated that complementary base-pairing sequence theoretically existed in the 3'UTR of NFATc1 mRNA and the seed region of miR-124. In C3H10T1/2 cells transfected with wild NFATc1 plasmid, the activity of luciferase in those supplemented with miR-124 mimics was significantly lower than that in those added with miR-124 inhibitor (P < 0.05). The expression levels of proteins in those supplemented with miR-124 inhibitor were higher compared with those with miR-124 mimics. In C3H10T1/2 cells transfected with mutant NFATc1 plasmid, no statistical significance was noted in the luciferase activity between the miR-124 mimics and miR-124 inhibitor groups (P>0.05). The expression levels of NFATc1 mRNA in the miR-124transfection and si-NFATc1groups were significantly lower than that in the control group (both P < 0.01). No statistical significance was observed in the expression level of NFATc1 mRNA between the miR-124 and si-NFATc1 groups (P>0.05). The results between the Western blot and real-time quantitative PCR were consistent. After miR-124 over-expression, the expression level of miR-124 mRNA was approximately up-regulated by 60 times, whereas that of NFATc1 was roughly down-regulated by 60%. After C3H10T1/2 cells were supplemented with 100 nmol/L miR-124 inhibitor, the expression level of miR-124 mRNA was approximately down-regulated by 60%, whereas that of NFATc1 was roughly doubled. After wild NFATc1 plasmid transfection with miR-124 mimics, the luciferase activity of NFATc1 was significantly down-regulated (P < 0.05), whereas the luciferase activity of NFATc1 after mutant NFATc1plasmid transfection with miR-124 mimics was similar to those in the other four groups (all P>0.05). Conclusion miR-124regulates the chondrogeneic differentiation of C3H10T1/2 cells through suppressing the expression of target gene of NFATc1.
Key words: miRNA-124    Bone mesenchymal stem cell    Chondrogeneic differentiation    Nuclear factor of activated T cells c1    

骨髓间充质干细胞(MSC)是一类来源于骨髓的具有多向分化潜能的干细胞,具有自我更新、组织再生和抗炎修复等功能。研究表明,MSC经诱导分化后性别决定区Y框蛋白9(Sox9)、Ⅱ型胶原及缺氧诱导因子-1α(HIF-1α)的表达水平上调,提示其具有转化为类髓核细胞的潜能[1]。MSC移植修复椎间盘退变疾病的重要机制是,在椎间盘微环境中MSC向类髓核细胞分化并增加基质大分子的合成。MSC来源广泛、体外培养可诱导类髓核细胞分化,是一种非常有前景的可应用于临床治疗椎间盘退变疾病的种子细胞。微小RNA(miR)是一类含有18~24个核苷酸的非编码RNA,通过与靶基因mRNA 3'端非翻译区(3’UTR)的互补序列以碱基配对方式执行降解靶基因或抑制其翻译的功能,参与调控MSC分化过程中的多种生物学过程[2-4]。本研究通过在线软件预测miR-124的靶基因,发现活化T细胞核因子c1(NFATc1)是其中一个潜在靶点。NFAT家族是一类具有广泛生理功能的转录因子,在成软骨分化过程中,NFATc1能促进软骨基因表达[5]。NFATc1广泛参与MSC生长、分化的生物学过程,特别是在成软骨过程中有基因调控的功能[6]。由此推测,miR-124可能通过靶向调控NFATc1表达促进人MSC向软骨细胞分化。本研究采用成软骨分化诱导培养体系诱导C3H10T1/2细胞向成软骨细胞分化,并探究miR-124在此过程是否通过调控NFATc1靶基因发挥生物学作用。

材料与方法 一、主要材料

间充质干细胞株C3H10T1/2细胞系(中山大学骨科研究所提供);高糖型DMEM培养基、10%胎牛血清购自美国HyClone公司;谷氨酰胺购自美国Gibco公司;胰酶、0.02%乙二胺四乙酸(EDTA)、抗坏血酸、青霉素链霉素双抗、β-甘油磷酸钠、地塞米松购自美国Sigma公司;pmiR-RB-REPORTTM质粒载体、ribo FECTTM CP转染试剂盒购自广州锐博生物科技有限公司;LipofectamineTM2000转染试剂盒及Trizol购于美国Invitrogen公司。Spe Ⅰ、Hind Ⅲ、T4 DNA连接酶和SYBR Premix ExTaqTM定量PCR试剂均为大连宝生物公司产品。实时定量PCR miR检测试剂盒购自广州天根生物公司。miR-124模拟物(mimics)及抑制物(inhibitors)为美国Ambion公司产品。定点突变试剂盒购自美国Stratagene公司。双荧光素酶活性检测试剂盒购自美国Promega公司。Smad4抗体和GAPDH抗体购自美国CST公司。NFATc1小干扰RNA(siRNA)由美国Invitorgen公司合成,引物合成及测序由深圳达生生物科技公司完成。

二、方法 1. 细胞培养与软骨诱导分化

以离心法进行软骨微团的构建,具体操作步骤参照文献[7]进行。小鼠C3H10T1/2细胞株经复苏后室温离心收集沉淀,用含10%胎牛血清的高糖型DMEM培养液混悬于37℃、5%CO2静置培养,待细胞融合至80%~90%,在胰酶消化下进行传代,每3 d更换培养液1次。将培养的C3H10T1/2细胞分为对照组与成软骨诱导组,分别加入含2%胎牛血清的DMEM和软骨诱导液诱导培养。每3 d换液1次,于第0、7、10、14日收集细胞微球进行基因表达检测。

2. 双荧光素酶报告基因构建及检测

使用在线靶基因预测软件(PicTar、TargetScan、miRanda、miRDB),预测NFATc1 mRNA的3'UTR上173~185 nt为miR-124的结合位点(GCACTTT)。人工合成NFATc1 mRNA 3'UTR区的靶点野生型序列(Wt)以及定点突变的突变序列(Mut, GCACTTT→CGTGAAA);XhoⅠ及NotⅠ双酶切pmiR-RB-REPORTTM质粒,再将Wt和Mut基因片段分别克隆到酶切后的pmiR-RBREPORTTM载体中,构建重组质粒pNFATc1-Wt或pNFATc1-Mut;基因测序确认重组质粒载体构建成功。按照试剂盒说明书突变NFATc1 3'UTR上miR-124结合位点,构建突变型pGL3-Mut-NFATc1真核表达载体。

取培养的C3H10T1/2细胞,根据转染质粒的不同分为4组:①pNFATc1-Wt质粒对照组,为转染pNFATc1-Wt质粒及miR-124 mimics对照;②pNFATc1-Wt质粒实验组,为转染pNFATc1-Wt质粒和miR-124 inhibitors;③pNFATc1-Mut质粒对照组,为转染pNFATc1-Mut质粒与miR-124 mimics对照;④pNFATc1-Mut质粒实验组,为转染pNFATc1-Mut质粒与miR-124 inhibitors。各组转染24 h后收集细胞,用双荧光素酶报告基因系统检测各组细胞的荧光素酶活性。每组实验重复3次,结果取平均值。另外,将NFATc1的3'UTR用XhoI/NotI点双酶切,插入到psiCHECKTM-2质粒中复制,与此相关的NFATc1 3'UTR片段被融合到荧光素酶中,并被转移到C3H10T1/2细胞,根据转染质粒分为不转染对照组(空白对照组)、miR-124 mimics组、miR-124 inhibitors组、pNFATc1-Wt质粒或pNFATc1-Mut组(正常对照组)、pNFATc1-Wt质粒或pNFATc1-Mut质粒加miR-124 inhibitors组(正常对照inhibitors组),分析miR-124对NFATc1荧光素酶活性的影响。

3. 实时定量PCR检测

在成软骨诱导分化第0、7、10、14日收集C3H10T1/2细胞微球,按RNA提取试剂盒说明书提取总RNA,并检测总RNA的含量及纯度,再按照逆转录试剂盒说明书进行逆转录,合成模板DNA第一链,实时定量PCR扩增目的基因,引物序列见表 1。反应条件为95℃10 min,95℃15 s,60℃ 30 s,72℃ 20 s,40个循环,内参为18 s。一步加A法逆转录miR,反应条件为95℃ 30 s,95℃ 3 s,60℃ 30 s,40个循环,内参为U6。上下游引物序列分别为5'-CTCGCTTCGGCAGCACA-3'和5'-AACGCTTCACGAATTTGCGT-3',使用2-ΔΔCt法计算基因相对表达量。每组实验重复3次,结果取平均值。记录软骨分化的相关标志基因Aggrecan、Ⅱ型胶原蛋白(Col2a1)和Ⅹ型胶原蛋白(Col10a1)及Sox9 mRNA表达水平。另外,取成软骨诱导7 d的C3H10T1/2细胞转染pNFATc1-Wt质粒(Control组)、pNFATc1-Wt质粒及miR-124 mimics(miR-124组)、经siRNA干预的pNFATc1-Wt质粒(si-NFATc1组),按前述方法检测NFATc1 mRNA表达水平。此外,取成软骨诱导7 d的C3H10T1/2细胞,转染miR-124 mimics和(或)pNFATc1-Wt质粒,转染成功后分别加入miR-124 mimics 0、50、100 nmol/L miR-124 mimics或inhibitors培养24 h,用前述同样方法分析各组NFATc1和miR-124 mRNA表达水平。

表 1 PCR引物序列
4. 蛋白免疫印迹法检测

提取各组细胞的总蛋白,测定蛋白浓度,加4倍SDS上样缓冲液8 μl和二硫苏糖醇2 μl混匀沸水浴5 min后作十二烷基硫酸钠聚丙烯酰胺SDS-PAGE凝胶电泳电泳,用电转印仪(100 V电压)电泳将凝胶上的蛋白转印至聚偏氟乙烯(PVDF)膜。将蛋白Marker剪下,避光保存,余下膜用5%脱脂牛奶室温封闭1 h,TBST缓冲液洗涤3次后,一抗4℃孵育过夜,TBST缓冲液再次洗涤3次,加入二抗室温孵育2 h,同前洗涤。按体积比1:1混合ECL试剂盒中A液和B液,混合液铺在膜表面,凝胶成像系统曝光,Quantity one软件分析结果。

三、统计学处理

采用SPSS 20.0分析数据。计量资料以x±s表示,组内不同时间点间比较采用配对t检验,2组间比较采用成组t检验,多组比较先行方差分析,进一步两两比较采用LSD-t检验。P<0.05为差异有统计学意义。

结果 一、C3H10T1/2软骨分化相关基因及蛋白表达的变化

成软骨诱导组中,在成软骨诱导分化第7、10、14日的软骨分化相关基因Aggrecan mRNA表达水平均逐渐升高(与诱导前比较,t分别为30.274、46.132、160.752,P均<0.001);Col2a1 mRNA相对表达量在第7、10日升高(与诱导前比较,t分别为10.246、67.202、45.311,P均<0.001),第14日稍下降(与诱导前比较,t=53.244、P<0.001;与第10日比较,t=2.376、P>0.05);Col10a1第7、10日增加缓慢(与诱导前比较,P均>0.05),但第14日大幅上调(与诱导前比较,t=330.784,P<0.001)。软骨分化后, 软骨化基因表达逐渐稳步增加,但并未达到峰值;Sox 9和NFATc1 mRNA表达水平随着软骨分化进展而增加(与对照组0 d及10 d时比较,t分别为65.266、80.232,P均<0.001),见图 1A~D。蛋白免疫印迹法显示,成软骨诱导组Col2a1、Sox 9和NFATc1蛋白呈逐渐增强表达,表明软骨发生的进展,而肥厚性标记Col10a1蛋白显示较稳定表达(图 1E)。

图 1 C3H10T1/2诱导成软骨分化的相关基因表达水平变化
二、miR-124对NFATc1的靶向性检测

通过Targetscan和miRanda等在线软件分析,发现NFATc1是miR-124的潜在靶基因之一,NFATc1 mRNA的3'UTR与miR-124的种子区存在理论上的互补碱基配对序列(图 2A)。转染NFATc1 Wt质粒的对照组荧光素酶活性低于实验组(t=3.837,P<0.05);转染NFATc1 Mut质粒的实验组与对照组间荧光素酶活性比较差异无统计学意义(P>0.05);转染NFATc1 Wt质粒的实验组NFATc1蛋白表达水平高于对照组(图 2B),表明miR-124直接作用于NFATc1。

图 2 miR-124通过靶向NFATc1促进C3H10T1/2细胞软骨分化 A:互补碱基配对序列;B:NFATc1荧光素酶活性检测结果和NFATc1蛋白表达;C:miR-124抑制NFAc1 mRNA和蛋白表达;与共转染NFATc1 Wt质粒的对照组荧光素酶活性比较,*P<0.01;与Control组比较,#P<0.01

miR-124组与si-NFATc1组的NFATc1 mRNA表达水平均低于Control组(LSD-t分别为5.642、4.338,P均<0.01),miR-124组与si-NFATc1组的NFATc1 mRNA表达水平接近(P>0.05);蛋白免疫印迹检测结果与实时定量PCR结果基本一致(图 2C),表明miR-124能在C3H10T1/2软骨分化的过程中靶向调控NFATc1表达。

三、抑制或过表达miR-124时C3H10T1/2的NFATc1表达水平变化

与未加入miR124 mimics相比,100 nmol/L的miR-124 mimics加入C3H10T1/2细胞后,miR-124 mRNA表达水平约增加60倍,而NFATc1 mRNA表达水平约降低60%(图 3A)。当100 nmol/L miR-124 inhibitors加入C3H10T1/2细胞时,与未加入时相比,miR-124 mRNA表达水平减少了大约60%,而NFATc1增加了大约1倍(图 3B)。转染NFATc1-Wt质粒的miR-124 mimics组NFATc1荧光素酶活性低于其他4组(F=8.256,LSD-t分别为5.436、7.442、3.433、6.282,P均<0.05),转染NFATc1-Mut质粒的miR-124 mimics组NFATc1荧光素酶活性与其他4组相近(P均>0.05),表明miR-124可作为NFATc1的抑制剂(图 3C)。

图 3 干扰NFATc1或过表达miR-124时C3H10T1/2的NFATc1表达水平变化 与其他4组比较,*P<0.05
讨论

C3H10T1/2细胞系是一种小鼠胚胎源性间充质干细胞,具有多向分化潜能,转染效率高且稳定,易获得大量转染成功的活细胞,现已广泛用于研究MSC分化潜能的实验中[8]。miR作为一类重要的转录后调控因子,在MSC的分化过程中参与调控细胞的多种生物学过程[9-10]。已有研究发现,miR在调控MSC或前体细胞成软骨、成骨及成脂的分化过程中发挥重要生物学功能[11]。miR-124能抑制MSC向软骨分化[12]。上述研究证实,miR可通过抑制靶基因的表达参与MSC分化的调控。然而其中的分子机制和调控的靶基因尚不清楚。本课题组前期实验首先诱导的C3H10T1/2细胞向软骨的定向分化,在此过程中发现miR-124表达逐渐下调,提示其在MSC软骨分化中可能具有重要的调控作用;然后通过生物信息学分析预测出miR-124潜在的其中一个靶基因NFATc1。本研究亦显示,软骨分化后NFATc1和软骨化相关基因及蛋白表达逐渐稳步增加。

本研究将NFATc1 3'-UTR克隆入荧光素酶报告载体并且与miR-124共转染C3H10T1/2细胞,结果显示miR-124抑制NFATc1 mRNA的3'UTR荧光素酶活性,发现其特异性与NFATc1 mRNA的3'UTR相结合。然而在生理状态下,靶基因3'UTR序列中的miR结合位点有可能由于mRNA的构象而被掩盖,导致该miR无法发挥抑制靶基因表达的功能。因此进一步检测该miR与NFATc1 3'UTR的结合能力及其对NFAc1表达的抑制作用,结果表明miR-124能抑制软骨分化过程中的NFATc1 mRNA及蛋白表达,并且其强度与NFATc1 siRNA干扰NFATc1内源性表达一致,证明了miR-124直接靶向调控NFATc1表达。通过功能研究siRNA干扰NFATc1表达能抑制MSC的成软骨化,它能部分模拟miR-124调控MSC软骨分化的功能。另外,蛋白免疫印迹检测结果也显示转染miR-124 mimics后,NFATc1的蛋白相对表达量比对照组明显下调;相反,转染miR-124 inhibitor后NFATc1的蛋白相对表达量与对照组比较则上调,表明在C3H10T1/2细胞成骨分化过程中miR-124通过调控靶基因NFATc1介导MSC向软骨方向分化。

综上所述,本研究运用生物信息学方法对miR-124和NFATc1基因的靶向配对关系进行预测,发现两者靶向配对良好,采用荧光素酶报告系统、实时定量PCR及蛋白免疫印迹法发现miR-124可靶向抑制NFATc1的表达而负向调控C3H10T1/2细胞成软骨分化。鉴于NFATc1是钙形成信号通路中的重要转导因子之一,因此miR-124调控成软骨分化的作用机制可能是通过抑制NFATc1的表达,因此阻碍其下游信号通路的激活,进而抑制MSC的成软骨分化。

参考文献
[1]
Almalki SG, Agrawal DK. Key transcription factors in the differentiation of mesenchymal stem cells[J]. Differentiation, 2016, 92(1-2): 41-51. DOI:10.1016/j.diff.2016.02.005
[2]
Polakovičová M, Musil P, Laczo E, Hamar D, Kyselovič J. Circulating microRNAs as potential biomarkers of exercise response[J]. Int J Mol Sci, 2016, 17(10): 17-23.
[3]
Zhang Z, Kang Y, Zhang Z, Zhang H, Duan X, Liu J, Li X, Liao W. Expression of microRNAs during chondrogenesis of human adipose-derived stem cells[J]. Osteoarthritis Cartilage, 2012, 20(12): 1638-1646. DOI:10.1016/j.joca.2012.08.024
[4]
田南南, 杨建新, 陈晓兰. miR-10b介导乳腺癌转移的机制与靶向治疗[J]. 新医学, 2013, 44(1): 8-10.
[5]
Lin SS, Tzeng BH, Lee KR, Smith RJ, Campbell KP, Chen CC. Cav3.2 T-type calcium channel is required for the NFAT-dependent Sox9 expression in tracheal cartilage[J]. Proc Natl Acad Sci U S A, 2014, 111(19): E1990-E1998. DOI:10.1073/pnas.1323112111
[6]
Sitara D, Aliprantis AO. Transcriptional regulation of bone and joint remodeling by NFAT[J]. Immunol Rev, 2010, 233(1): 286-300. DOI:10.1111/imr.2009.233.issue-1
[7]
Ray P, Chapman SC. Cytoskeletal reorganization drives mesenchymal condensation and regulates downstream molecular signaling[J]. PLoS One, 2015, 10(8): e0134702. DOI:10.1371/journal.pone.0134702
[8]
Zou F, Xu JC, Wu GH, Zhou LL, Wa QD, Peng JQ, Zou XN. Effects of oncostatin M on cell proliferation and osteogenic differentiation in C3H10T1/2[J]. J Musculoskelet Neuronal Interact, 2016, 16(4): 377-385.
[9]
Zhou X, Wang J, Sun H, Qi Y, Xu W, Luo D, Jin X, Li C, Chen W, Lin Z, Li F, Zhang R, Li G. MicroRNA-99a regulates early chondrogenic differentiation of rat mesenchymal stem cells by targeting the BMPR2 gene[J]. Cell Tissue Res, 2016, 366(1): 143-153. DOI:10.1007/s00441-016-2416-8
[10]
Hou C, Yang Z, Kang Y, Zhang Z, Fu M, He A, Zhang Z, Liao W. MiR-193b regulates early chondrogenesis by inhibiting the TGF-beta2 signaling pathway[J]. FEBS Lett, 2015, 589(9): 1040-1047. DOI:10.1016/j.febslet.2015.02.017
[11]
Laine SK, Alm JJ, Virtanen SP, Aro HT, Laitala-Leinonen TK. MicroRNAs miR-96, miR-124, and miR-199a regulate gene expression in human bone marrow-derived mesenchymal stem cells[J]. J Cell Biochem, 2012, 113(8): 2687-2695. DOI:10.1002/jcb.v113.8
[12]
Mondanizadeh M, Arefian E, Mosayebi G, Saidijam M, Khansarinejad B, Hashemi SM. MicroRNA-124 regulates neuronal differentiation of mesenchymal stem cells by targeting Sp1mRNA[J]. J Cell Biochem, 2015, 116(6): 943-953. DOI:10.1002/jcb.25045