
非接触式连续生命体征监测在慢性阻塞性肺疾病患者病情评估中的应用研究
刘爽, 龙志聪, 周宇麒, 罗英华, 杨海玲
新医学 ›› 2025, Vol. 56 ›› Issue (2) : 206-214.
非接触式连续生命体征监测在慢性阻塞性肺疾病患者病情评估中的应用研究
Research on the application of non-contact continuous vital signs monitoring in the assessment of patients with chronic obstructive pulmonary disease
目的 评估非接触式生命体征监测在慢性阻塞性肺疾病(COPD)患者中的临床应用价值,分析多维度生命体征参数与病情严重程度的相关性,探讨其在COPD监测中的应用价值。方法 选择2021年3月至2023年10月在中山大学附属第三医院天河院区诊治的55例COPD患者,所有患者均接受新型非接触式生命体征监测系统部署,并完成标准化肺功能评估。收集其临床基线数据,并采集夜晚生理信号,核心监测指标包括心率变异性(HRV)、呼吸特征睡眠结构。根据患者肺功能评估情况分为轻、中、重、极重度,将轻度者分为非严重组,中、重、极重度者分为严重组,比较组间差异,构建风险模型,并利用受试者操作特征(ROC)曲线分析的各参数在COPD病情评估中的效能。结果 轻、中、重、极重度者的性别、年龄、体质量指数(BMI)、第1秒用力呼气容积(FEV1)、用力肺活量(FVC)、FEV1/FVC比较差异有统计学意义(均P < 0.05)。组间心脏总能量、心脏总能量基准值、交感神经张力指数、交感神经张力基准值、迷走神经张力指数以及迷走神经张力基准值比较差异亦有统计学意义(均P < 0.05),且这些指标随病情加重呈上升趋势;自主神经平衡和自主神经平衡基准值在组间比较差异未见统计学意义(均P > 0.05)。HRV对COPD患者严重程度的影响较为明显;迷走神经张力指数、心脏总能量基准值、浅睡眠时间以及长期基准呼吸参数对病情严重程度的诊断具有较高效能,其ROC曲线下面积(AUC)分别为0.892、0.886、0.800和0.733。结论 非接触式连续生命体征监测在COPD病程管理中具有可行性,HRV、浅睡眠时间和长期基准呼吸频率等指标在COPD患者的病情监测与评估中具有重要的临床应用价值。
ObjectiveTo evaluate the clinical application value of non-contact vital signs monitoring in patients with chronic obstructive pulmonary disease (COPD), analyze the correlation between multi-dimensional vital signs parameters and disease severity, and explore their application value in COPD monitoring. Methods A total of 55 COPD patients treated at the Tianhe Campus of the Third Affiliated Hospital of Sun Yat-sen University from March 2021 to October 2023 were enrolled. All patients underwent deployment of a novel non-contact vital signs monitoring system and completed standardized pulmonary function assessments. Clinical baseline data were collected, and nocturnal physiological signals were recorded, with core monitoring indicators including heart rate variability (HRV), respiratory characteristics, and sleep structure. Based on pulmonary function assessments, patients were categorized into mild, moderate, severe, and very severe groups. The mild cases were classified as the non-severe group, while the moderate, severe, and very severe cases were combined into the severe group. Intergroup differences were compared, a risk model was constructed, and the efficacy of each parameter in assessing COPD severity was analyzed using receiver operating characteristic (ROC) curves. Results Significant differences were observed among the mild, moderate, severe, and very severe cases in terms of gender, age, body mass index (BMI), forced expiratory volume in the first second (FEV1), forced vital capacity (FVC), and FEV1/FVC ratio (all P < 0.05). Significant differences were also found between the two groups in total cardiac energy, total cardiac energy baseline value, sympathetic nerve tension index, sympathetic nerve tension baseline value, vagal nerve tension index, and vagal nerve tension baseline value ( all P < 0.05), with these indicators showing an increasing trend as disease severity worsened. No significant differences were observed in autonomic nerve balance and autonomic nerve balance baseline value between the groups (all P > 0.05). HRV had a notable impact on COPD severity. The vagal nerve tension index, total cardiac energy baseline value, light sleep duration, and long-term baseline respiratory parameters demonstrated high efficacy in diagnosing disease severity, with areas under the ROC curve (AUC) values of 0.892, 0.886, 0.800, and 0.733, respectively. Conclusions Non-contact continuous vital signs monitoring is feasible in the management of COPD. Indicators such as HRV, light sleep duration, and long-term baseline respiratory rate hold significant clinical value in the monitoring and assessment of COPD patients.
慢性阻塞性肺疾病 / 非接触式监测 / 心率变异性 / 自主神经功能 / 病情评估模型 {{custom_keyword}} /
Chronic obstructive pulmonary disease (COPD) / Non-contact monitoring / Heart rate variability (HRV) / Autonomic nervous function / Disease severity assessment model {{custom_keyword}} /
表1 核心监测指标Table 1 Core monitoring metrics |
参 数 | 具体指标 | 算法依据 |
---|---|---|
自主神经功能(HRV) | 心脏总能量、交感神经张力指数、迷走神经张力指数 | FFT频域分析(0.04~0.40 Hz) |
呼吸特征 | 基准呼吸率、AHI指数、呼吸暂停次数 | 移动窗方差分析法 |
睡眠结构 | NREM各期时间、REM占比、觉醒次数 | AASM 2020分期标准 |
注:心率变异性(heart rate variability,HRV),呼吸暂停低通气指数(Apnea-Hypopnea Index,AHI),非快速眼动期(non-rapid eye movement,NREM),快速傅立叶变换(fast Fourier transform,FFT)。 |
表2 COPD不同亚组临床资料分析Table 2 The clinical data analysis of different subgroups of COPD |
组 别 | 轻度组(n=13) | 中度组(n=11) | 重度组(n=18) | 极重度组(n=13) | F/H值 | P值 |
---|---|---|---|---|---|---|
男/n(%) | 9(69.2) | 10(90.9) | 18(100.0) | 13(100.0) | 0.010d | |
年龄/岁 | 64.8(59.8,71.8) | 66.8(65.0,71.0) | 74.8(66.8,83.0)a | 73.8(71.0,77.0)a | 12.695 | 0.005 |
BMI/(kg/m2) | 24.5±1.8 | 24.4±3.6 | 21.6±2.0a | 19.5±2.8abc | 7.530 | <0.001 |
FEV1%prede | 87.0(81.0,94.6) | 63.4(55.3,73.1)a | 39.1(35.0,43.4)ab | 23.3(19.8,27.6)a | 49.602 | <0.001 |
FVC%prede | 103.3±10.8 | 78.3±9.2 | 62.8±14.9a | 41.1±10.4abc | 30.260 | <0.001 |
(FEV1/FVC)%prede | 73.9(67.4,78.8) | 62.5(62.5,68.8)a | 49.4(43.2,56.8)a | 45.3(37.8,51.9)ab | 33.711 | <0.001 |
注:与轻度组比较,aP < 0.05(Tukey HSD检验)或< 0.008(Dunn多重比较,Bonferroni校正);与中度组比较,bP < 0.05(Tukey HSD检验)或< 0.008(Dunn多重比较,Bonferroni校正);与重度组比较,cP < 0.05(Tukey HSD检验)或< 0.008(Dunn多重比较,Bonferroni校正);dFisher确切概率法;e%pred指该项指标实测值占预计值的百分比。 |
表3 COPD不同亚组间心率变异性参数差异性分析Table 3 Analysis of differences in cardiac-related parameters among different subgroups of COPD |
参 数 | 轻度组(n=13) | 中度组(n=11) | 重度组(n=18) | 极重度组(n=13) | F/H值 | P值 |
---|---|---|---|---|---|---|
心脏总能量/J | 3 686.1±706.2 | 3 760.3±1 937.7 | 7 377.4±3 957.2a | 10 198.4±5 280.2ac | 6.464 | 0.001 |
心脏总能量基准值/J | 3 787.7±279.0 | 3 827.7±1 703.2 | 6 984.9±3 047.4a | 8 866.0±3 802.4bc | 6.034 | 0.001 |
交感神经张力指数 | 867.2±205.1 | 888.4±582.6 | 1 832.2±1 090.1ab | 2 528.8±1 392.6c | 4.491 | 0.007 |
交感神经张力指数基准值 | 836.6±134.9 | 982.0±540.8 | 1 738.5±804.7ab | 2 313.1±1 130.4c | 4.397 | 0.008 |
迷走神经张力指数 | 1 052.6±324.2 | 1 107.1±496.4 | 2 001.7±764.1ab | 2 507.4±960.0c | 5.739 | 0.002 |
迷走神经张力指数基准值 | 1 025.9±219.8 | 1 130.7±470.7 | 1 814.5±615.3ab | 2 271.1±838.2c | 4.832 | 0.005 |
自主神经平衡 | 0.87(0.68,1.03) | 0.77(0.67,1.02) | 0.83(0.71,0.95) | 0.92(0.79,1.08) | 0.963 | 0.397 |
自主神经平衡基准值 | 0.87(0.72,1.02) | 0.83(0.67,1.03) | 0.87(0.78,0.97) | 0.90(0.79,1.04) | 0.494 | 0.920 |
注:与轻度组比较,aP < 0.05(Tukey HSD检验);与中度组比较,bP < 0.05;与重度组比较,cP < 0.05。 |
图2 COPD患者临床基本资料、心率变异性、睡眠结构及呼吸特征与病情严重程度的ROC曲线注:A为临床基本资料与病情严重程度的ROC曲线;B为心率变异性与病情严重程度的ROC曲线;C为睡眠结构与病情严重程度的ROC曲线;D为呼吸特征与病情严重程度的ROC曲线。Figure 2 ROC curves of clinical basic information, heart rate variability, sleep structure, respiratory characteristics, and severity of patients with COPD |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
RODRÍGUEZ GONZÁLEZ-MORO J M,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
RODRÍGUEZ GONZÁLEZ-MORO J M,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
陈小平, 翁朝航, 池海燕, 等. 物联网医学技术在肺功能筛查中的应用研究[J]. 中国卫生信息管理杂志, 2020, 17(4): 528-532, 543. DOI: 10.3969/j.issn.1672-5166.2020.04.025.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
朱俞彤, 刘祚燕. 物联网云平台的肺康复护理对老年慢性阻塞性肺疾病稳定期患者肺功能的影响[J]. 中国医药导报, 2021, 18(1): 184-188.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
利益冲突声明:本研究未受到企业、公司等第三方资助,不存在潜在利益冲突。
/
〈 |
|
〉 |