代谢相关脂肪性肝病与双相情感障碍的共享遗传研究

A shared genetic study of metabolic dysfunction-associated steatotic liver disease and bipolar disorder

  • 摘要:
    目的 利用全基因组关联研究(GWAS)数据,系统解析代谢相关脂肪性肝病(MASLD)与双相情感障碍(BP)的共享遗传结构,识别多效性基因,并探究两者间的因果关联。
    方法 整合MASLD(病例n = 4 761,对照n = 373 227)与BP(病例n = 8 946,对照n = 434 831)的GWAS汇总数据。采用连锁不平衡分数回归(LDSC)评估遗传相关性,通过跨性状关联分析(CPASSOC)识别共享风险位点。为增强统计效能并定位多效性基因,应用多性状GWAS整合分析(MTAG),并结合了5种基因映射策略(MAGMA,GCTA-fastBAT,sCCA,CONTENT,PWAS)识别多效性基因。最后,通过双向孟德尔随机化(MR)分析检验两者间的因果关联,并对识别出的共享基因进行功能富集与组织细胞特异性分析。
    结果 LDSC分析显示,MASLD与BP之间存在显著的正向遗传相关性(rg = 0.356,P = 5.47×10−6)。CPASSOC识别出396个共享遗传位点。综合多组学分析策略,最终鉴定出22种在2种疾病中均具有密切关联的多效性基因,包括前蛋白转化酶枯草杆菌蛋白酶9型(PCSK9)、信号转导子及转录激活子3(STAT3)、脂肪量和肥胖相关基因(FTO)、性激素结合球蛋白(SHBG)等。这些基因显著富集于磷脂酰肌醇3激酶(PI3K)/蛋白激酶B(Akt)信号通路、过氧化物酶体增殖物激活受体(PPAR)信号通路及细胞外基质组织等关键生物学通路,并在肝脏、脂肪组织、动脉及消化系统相关细胞类型中高度表达。然而双向MR分析并未发现MASLD与BP之间存在直接的因果关联。在油酸诱导HepG2的MASLD细胞模型中,PCSK9、磷酸烯醇式丙酮酸羟化激酶(PCK1)和Cut 样同源框蛋白2(CUX2)的mRNA表达水平均上调(均P < 0.05)。
    结论 MASLD与BP的临床共病现象可能源于共享遗传基础。本研究识别出的22个核心共享基因涉及肝脏脂质代谢、神经炎症、细胞凋亡及应激反应等多种生物过程,这为理解二者共病机制提供了新的遗传学证据和潜在的治疗靶点。

     

    Abstract:
    Objective Using genome-wide association study (GWAS) data, to systematically delineate the shared genetic architecture between metabolic dysfunction-associated steatotic liver disease (MASLD) and bipolar disorder (BP), identify pleiotropic genes, and explore the causal relationship between the two.
    Methods We integrated GWAS summary data for MASLD (cases n = 4,761, controls n = 373,227) and BP (cases n = 8,946, controls n = 434,831). Linkage disequilibrium score regression (LDSC) was employed to assess genetic correlation, and cross-phenotype association analysis (CPASSOC) was used to identify shared risk loci. To enhance statistical power and pinpoint pleiotropic genes, we applied multi-trait analysis of GWAS (MTAG) and combined five gene-mapping strategies (MAGMA, GCTA-fastBAT, sCCA, CONTENT, and PWAS) to identify pleiotropic genes. Finally, we conducted bidirectional Mendelian randomization (MR) analysis to test causal relationships between the two disorders, and performed functional enrichment and tissue/cell-type specificity analyses for the shared genes identified.
    Results The LDSC analysis revealed a significant positive genetic correlation between MASLD and BP (rg = 0.356, P = 5.47×10−6). CPASSOC identified 396 shared genetic loci. By integrating multi-omics analytical strategies, we ultimately identified 22 pleiotropic genes significantly associated with both diseases, including proprotein convertase subtilisin/kexin type 9 (PCSK9), signal transducer and activator of transcription 3 (STAT3), fat mass and obesity-associated gene (FTO), and sex hormone-binding globulin (SHBG). These genes were significantly enriched in key biological pathways such as the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, the PPAR signaling pathway, and extracellular matrix organization, and were highly expressed in liver, adipose tissue, arteries, and digestive system-related cell types. However, bidirectional MR analysis did not detect a direct causal relationship between MASLD and BP. In an oleic acid-induced MASLD cell model using HepG2 cells, mRNA expression levels of PCSK9, PCK1, and CUX2 were upregulated (all P < 0.05).
    Conclusions The clinical comorbidity of MASLD and BP may stem from a shared genetic basis. The 22 core shared genes identified in this study are involved in multiple biological processes, including hepatic lipid metabolism, neuroinflammation, apoptosis, and stress response, providing novel genetic evidence and potential therapeutic targets for understanding the comorbidity mechanisms of the two conditions.

     

/

返回文章
返回