266 新医学 **3023 年4 月第 54 卷第 4 期**

研究论著

DOI: 10.3969/j.issn.0253-9802.2023.04.007

健脑操对轻度认知功能障碍患者认知功能及 精神行为症状的影响

李海员 陈秋蕾 罗苑霞 宋汉聪 雷蕾 邓玉娇 肖露 曾小敏

【摘要】 目的 观察健脑操训练对轻度认知功能障碍(MCI)患者认知功能及精神行为症状的影响。方法 将80例 MCI 患者随机分为干预组和对照组各40例,对干预组进行每周2次、每次45~60 min 的健脑操训练,持续训练12周;分别于基线、3个月、6个月时对2组进行简易精神状态检查量表(MMSE)、蒙特利尔认知评估量表(MOCA)、Zung 焦虑自评量表(SAS)、Zung 抑郁自评量表(SDS)、神经精神量表(NPI)、匹兹堡睡眠质量指数(PSQI)的评估。结果 随访3个月和6个月时,对照组 MMSE 总分均较基线下降(P<0.001、P=0.007),注意力与计算力亚项分值也下降(P<0.001、P=0.009),语言能力亚项分值于随访6个月时也下降(P=0.012);干预组 MMSE 总分及其亚项分值各时间点比较差异均无统计学意义(P均>0.05)。对照组随访3个月和6个月时的 MOCA 总分均较基线下降(P=0.011、P<0.001),注意力与计算力亚项得分明显下降(P=0.002、P=0.048);干预组随访6个月时 MOCA 总分较基线增加(P=0.001),随访3个月和6个月时注意力与计算力亚项得分均较基线增加(P均<0.001),且此时2组注意力与计算力亚项得分比较差异均具有统计学意义(P均<0.001)。随访3个月和6个月时,对照组 SAS分值均较基线增加(P=0.001、P=0.003),SDS分值也均较基线增加(P=0.002、P=0.007);而干预组于随访6个月时SDS分值较基线下降(P=0.009)。随访6个月时2组的SAS和SDS分值比较差异均具有统计学意义(P=0.002、P=0.016)。干预组和对照组NPI、PSQI分值无明显变化。结论 健脑操训练可在一定程度上改善MCI 患者认知功能、稳定情绪,在预防或延缓 MCI 患者向痴呆转化方面可能具有积极作用。

【关键词】 轻度认知功能障碍; 健脑操; 认知功能; 精神行为症状

Effect of brain exercise training on cognitive function and behavioral and psychological symptoms of patients with mild cognitive impairment Li Haiyuan, Chen Qiulei, Luo Yuanxia, Song Hancong, Lei Lei, Deng Yujiao, Xiao Lu, Zeng Xiaomin. Guangzhou Geriatric Hospital, Guangzhou 510030, China

Corresponding author, Li Haiyuan, E-mail: 46053841@qq.com

[Abstract] Objective To observe the effect of brain exercise training on cognitive function and behavioral and psychological symptoms of patients with mild cognitive impairment (MCI) . Methods 80 patients with MCI were randomly divided into the intervention (n = 40) and control groups (n = 40). In the intervention group, brain exercise training was delivered for 45-60 min twice a week for 12 consecutive weeks. Mini-Mental State Examination Scale (MMSE), Montreal Cognitive Assessment (MoCA), Zung's Self-rating Anxiety Scale (SAS), Zung's Self-rating Depression Scale (SDS), Neuropsychiatric Inventory (NPI) and Pittsburgh Sleep Quality Index (PSQI) between two groups were evaluated at the baseline, 3 months and 6 months, respectively. Results In the control group, the total MMSE scores at 3 and 6 months were significantly declined compared with the baseline value (P < 0.001, P = 0.007), the scores of attention and calculation domains were significantly decreased (P < 0.001, P = 0.009), and the score of language domain was also significantly declined at 6-month follow-up (P = 0.012). No significant differences were observed regarding the total and each domain scores of MMSE at different time points in the intervention group (all P > 0.05). In the control group, the total MoCA scores at 3- and 6-month follow-up were significantly lower than the baseline value (P = 0.011, P < 0.001), and the scores of attention and calculation domains were considerably declined (P = 0.002, P = 0.048). In the intervention group, the total MoCA score at 6 months was significantly higher than the baseline value (P = 0.001), and the scores of attention and calculation domains at 3- and 6-month follow-up were considerably higher compared with the baseline values (both P < 0.001), which significantly differed between two groups (both P < 0.001). In the control group, the SAS scores at 3- and 6-month follow-up were significantly higher than

基金项目: 广州市卫生健康科技项目(20191A011113)

作者单位: 510030 广州,广州市老年医院 通信作者,李海员, E-mail: 46053841@qq.com

the baseline values (P = 0.001, P = 0.003), the SDS scores at 3- and 6-month follow-up were also significantly higher compared with the baseline values (P = 0.002, P = 0.007). In the intervention group, the SDS score at 6 months was significantly lower than the baseline score (P = 0.009). The SAS and SDS scores at 6-month follow-up significantly differed between two groups (P = 0.002, P = 0.016). No significant changes were observed in the NPI and PSQI scores between two groups. **Conclusion** Brain exercise training can improve the cognitive function and stabilize the mood of MCI patients to a certain extent, which might play a positive role in preventing or delaying the progression of MCI into dementia.

[Key words] Mild cognitive impairment; Brain exercise; Cognitive function; Behavioral and psychological symptom

轻度认知功能障碍(MCI)是介于痴呆和正常老化之间的一种认知缺损状态,临床表现为轻度记忆力或认知功能障碍,但未达到痴呆的诊断。国内外研究表明 MCI 患者不仅存在认知功能受损,同时合并有各种精神行为症状,尤其以抑郁、焦虑等情感异常多见[1]。目前尚无药物获得 FDA 批准用于治疗 MCI 患者,因此非药物治疗已成为MCI 早期干预的主要手段。国外研究表明运动能改善 MCI 患者的认知功能[2]。2017 年底,美国神经病学学会(AAN)更新了 MCI 的实践指南,首次明确提出将每周 2 次的定期运动锻炼作为 MCI 患者整体治疗的一部分(B 级推荐)[3]。

健脑操是由美国保罗丹尼逊博士于 1969 年创立的,共 26 式。健脑操的科学原理是通过一系列身体动作系统地刺激大脑不同部分之间的联系及整合,促使大脑更加发达,从而提升大脑的运作水平。1998 年,中国香港注册健脑操导师及顾问蔡慧明、何兆灿将健脑操引入国内,经过多年的实践发现健脑操在改善认知功能、增强专注力及记忆能力、强化日常工作的组织能力、建立积极情绪等方面具有重要意义。

目前国内尚无健脑操对 MCI 患者的认知功能 及精神行为症状影响的研究,本研究首次探讨该 问题,为轻度认知功能障碍患者的早期运动模式 干预提供依据。

对象与方法

一、研究对象

根据预实验结果将 2019 年 10 月至 2021 年 7 月广州市老年医院的 80 例 MCI 患者设为研究对象,将其随机分为干预组与对照组各 40 例。入组标准:采用 Petersen 等 2001 年修订的 MCI 临床诊断标准,①主诉为记忆力障碍。②具有客观记忆受损依据。③总体认知功能正常。④日常生活能力保持完好。⑤尚不能诊断痴呆。年龄>60 岁,简易精神状态

检查量表(MMSE)≥26分,痴呆临床评定量表(CDR)评分=0.5分^[46]。排除标准:①有长期酗酒、长期服用精神病药物、严重的头部外伤史、抑郁症、精神分裂症、甲状腺疾病、贫血、维生素 B₁₂及叶酸缺乏、脑血管病、严重视力、听力障碍等。②伴有严重躯体疾病导致不能配合健脑操训练者。本研究通过广州市老年医院医学伦理委员会审批,所有患者同意参加。

二、方法

1. 成立评估小组及干预小组

由医师、认知康复员、护士、社工组成评估小组,所有评估人员均经过严格培训,熟悉掌握评估量表的操作,评估小组负责对研究对象进行基线评估及随访评估;干预小组成员主要为社工,负责对干预对象进行健脑操干预训练。

2 制定干预措施

健脑操动作共26式,其中部分动作对于老年人来说操作难度大,在充分考虑老年人躯体功能、安全性、可操作性等因素的情况下筛选出其中8式动作作为本次研究的干预措施。

3. 资料收集及基线评估

资料收集包括一般情况、临床病史采集等。分别对干预组和对照组进行基线评估,评估量表包括:① MMSE,使用张明园修订的中文版,总分为 0~30 分,文盲组 < 17 分、小学组 < 20 分、中学或以上组 < 24 分为认知功能受损。②蒙特利尔认知评估量表(MOCA),由 Nasreddine 等[6] 开发,本研究采用北京版 MOCA,< 26 分为认知功能受损,受教育年限<12 年者总分加 1 分。③ Zung 焦虑自评量表(SAS),用于评定焦虑症状,< 50 分者正常,50~60 分为轻度焦虑,61~70 分为中度焦虑,> 70 分为重度焦虑^[7]。④ Zung 抑郁自评量表(SDS),用于评定抑郁症状,< 50 分为正常,50~60 分为轻度抑郁,61~70 分为中度抑郁,> 70 分为重度抑郁^[8]。⑤神经精神量表(NPI),用于评

定精神行为症状,总分为 0~144 分,得分越高提示患者精神行为症状越严重^[9]。⑥匹兹堡睡眠质量指数 (PSQI),用于评定最近 1 个月的睡眠情况,总分为 0~21 分, < 7 分为睡眠质量正常,>7 分为低睡眠质量,得分越高表明睡眠质量越差^[10]。

4. 实施干预计划

干预组进行每周 2 次、每次 45~60 min 的健脑 操干预训练、持续训练 12 周。

5. 随访评估

分别于干预 3 个月、6 个月后对干预组和对 照组进行随访,完成 MMSE、MOCA、SAS、SDS、 NPI、PSQI 等量表评估工作。

三、统计学处理

本研究采用 SPSS 23.0 软件进行数据处理。符合正态分布的计量资料以 $\bar{x} \pm s$ 表示,组间比较采用 t 检验,非正态分布的计量资料以 M (P_{25} , P_{75}) 表示,组间比较采用秩和检验,计数资料以例表示,组间比较采用 χ^2 检验。2 组不同时间点多次测量的纵向资料采用广义估计方程模型进行分析。P < 0.05 为差异有统计学意义。

结 果

一、一般资料和基线评估的比较

本次研究过程中干预组有 4 例患者因个人原因退出研究,最终共有 76 例患者完成随访观察,分别为对照组 40 例、干预组 36 例,失访率 5.3%。2 组患者年龄、性别、文化程度、基线评估量表得分的比较差异均无统计学意义 (P < 0.05)。见

表 1。

二、干预组与对照组 MCI 患者认知功能评分的比较

1. MMSE

随访 3 个月和 6 个月时,对照组 MMSE 总分均较基线下降 (P < 0.001、P = 0.007),注意力与计算力亚项分值也下降 (P < 0.001、P = 0.009),语言能力亚项分值于随访 6 个月时也下降 (P = 0.012);干预组 MMSE 总分及其亚项分值各时间点比较差异均无统计学意义 (P均 > 0.05)。见表 2。

2. MOCA

对照组随访 3 个月和 6 个月时的 MOCA 总分均较基线下降 (P=0.011、P<0.001),注意力与计算力亚项得分明显下降 (P=0.002、P=0.048);干预组随访 6 个月时 MOCA 总分较基线增加 (P=0.001),随访 3 个月和 6 个月时注意力与计算力亚项得分均较基线增加 (P均 < 0.001),且此时 2 组注意力与计算力亚项得分的比较差异均具有统计学意义 (P均 < 0.001)。见表 3。

3. 精神行为症状及睡眠质量评分

干预前 MCI 患者中 5.3% 伴焦虑症状,19.7% 伴抑郁症状,39.5% 的睡眠质量异常。随访 3 个月和 6 个月时,对照组 SAS 分值均较基线增加(P=0.001、P=0.003),SDS 分值也均较基线增加(P=0.002、P=0.007);而干预组于随访 6 个月时 SDS 分值较基线下降(P=0.009)。随访 6 个月时 2 组的 SAS 和 SDS 分值比较差异有统计学意义(P=0.002、P=0.016)。2 组 NPI、PSQI 分值无明显变

表 1 对照组和干预组患者一般资料比较

	组 别	对照组(40例)	干预组(36例)	t/χ²/Z 值	P 值
年龄/岁		82.33 ± 6.12	82.08 ± 6.08	-0.173	0.864
性别/例	男	14	6	3.284	0.070
	女	26	30		
文化程度 / 例					
文盲及小学		10	9	1.331	0.514
初中		11	14		
高中及以上		19	13		
MMSE/分		27.00 (26.00, 28.00)	27.00 (26.00, 28.00)	-1.010	0.313
MOCA/分		21.00 (20.00, 23.00)	21.00 (20.00, 23.00)	-0.058	0.954
SAS/分		30.50 (28.00, 39.50)	33.00 (26.25, 40.00)	-0.089	0.929
SDS/分		34.00 (28.00, 44.75)	33.00 (29.00, 45.75)	-0.162	0.872
NPI/分		0.00 (0.00, 2.00)	0.00 (0.00, 0.00)	-0.726	0.468
PSQI/分		7.50 (2.25, 11.00)	5.50 (3.00, 8.00)	-0.407	0.684

表 2 干预组与对照组 MCI 患者 MMSE 各时间点分值比较 $(\bar{x} \pm s)$

单位:分

项 目	组别	基线	干预3个月后	干预6个月后	组间效应		时间效应		交互效应	
火 日	组	至纹			<i>F</i> 值	P 值	F 值	<i>P</i> 值	F 值	P 值
MMSE	对照组(40例)	27.35 ± 1.23	26.90 ± 1.22^{a}	26.65 ± 2.19^{a}	0.443	0.506	3.689	0.158	6.908	0.032
总分	干预组(36例)	27.11 ± 1.33	27.28 ± 1.95	27.17 ± 1.65						
定向力	对照组(40例)	9.20 ± 0.69	9.27 ± 0.72	9.13 ± 1.07	1.689	0.194	7.553	0.023	0.878	0.645
	干预组(36例)	9.50 ± 0.74	9.53 ± 0.74	9.22 ± 1.12						
即刻	对照组(40例)	2.92 ± 0.27	2.95 ± 0.22	2.95 ± 0.22	0.783	0.376	0.464	0.793	3.524	0.172
记忆力	干预组(36例)	3.00 ± 0.00	2.94 ± 0.23	2.97 ± 0.17						
注意力与	对照组(40例)	3.95 ± 1.06	3.53 ± 0.88^{a}	3.57 ± 1.15^{a}	0.952	0.329	1.479	0.477	7.913	0.019
计算力	干预组(36例)	3.75 ± 1.25	3.92 ± 1.05	4.00 ± 1.01						
延迟	对照组(40例)	2.68 ± 0.53	2.57 ± 0.59	2.73 ± 0.51	2.174	0.140	1.434	0.488	3.992	0.136
回忆	干预组(36例)	2.42 ± 0.69	2.58 ± 0.50	2.53 ± 0.56						
语言	对照组(40例)	7.78 ± 0.48	7.65 ± 0.48	7.45 ± 0.82^{a}	0.001	0.969	3.859	0.145	10.753	0.005
能力	干预组(36例)	7.67 ± 0.72	7.50 ± 0.81	7.69 ± 0.53						
视空间	对照组(40例)	0.82 ± 0.39	0.92 ± 0.27	0.83 ± 0.39	1.226	0.268	4.023	0.134	0.717	0.699
能力	干预组(36例)	0.78 ± 0.42	0.81 ± 0.40	0.75 ± 0.44						

注: 与同组基线比较, *P < 0.05, *P < 0.05。

表 3 干预组与对照组 MCI 患者 MOCA 各时间点分值比较 ($\bar{x} \pm s$)

单位:分

•					•		
组别	甘华	干预3个月后	干预6个月后	组间效应	时间效应	交互效应	
	至纹			<i>F</i> 值 <i>P</i> 值	<i>F</i> 值 <i>P</i> 值	<i>F</i> 值 <i>P</i> 值	
对照组(40例)	21.00 ± 1.95	20.75 ± 1.81°	20.65 ± 1.85^{a}	0.783 0.376	0.669 0.716	25.756 < 0.001	
干预组(36例)	21.06 ± 2.06	21.19 ± 2.15	21.33 ± 2.10^{a}				
对照组(40例)	2.93 ± 1.00	2.78 ± 0.95	2.75 ± 0.95	0.005 0.942	2.771 0.250	2.445 0.295	
干预组(36例)	2.83 ± 1.11	2.86 ± 1.10	2.81 ± 1.20				
对照组(40例)	2.65 ± 0.53	2.85 ± 0.36^{a}	2.73 ± 0.45	5.722 0.017	0.326 0.849	19.451 < 0.001	
干预组(36例)	2.58 ± 0.55	$2.42 \pm 0.60^{\rm b}$	2.50 ± 0.56				
对照组(40例)	4.45 ± 0.93	4.15 ± 0.80^{a}	4.25 ± 0.78^{a}	9.267 0.002	12.240 0.002	51.665 < 0.001	
干预组(36例)	4.36 ± 0.96	5.03 ± 0.85 ab	5.11 ± 0.85 ab				
对照组(40例)	1.60 ± 0.59	1.67 ± 0.57	1.50 ± 0.51	0.237 0.626	1.680 0.432	10.253 0.006	
干预组(36例)	1.72 ± 0.57	1.58 ± 0.60^{a}	1.64 ± 0.68				
对照组(40例)	1.28 ± 0.55	1.25 ± 0.49	1.35 ± 0.53	1.712 0.191	1.445 0.468	2.018 0.365	
干预组(36例)	1.19 ± 0.58	1.14 ± 0.49	1.14 ± 0.42				
对照组(40例)	1.85 ± 0.86	1.72 ± 0.60	1.73 ± 0.68	0.640 0.424	6.440 0.040	0.745 0.689	
干预组(36例)	2.00 ± 0.72	1.86 ± 0.64	1.78 ± 0.68				
对照组(40例)	5.75 ± 0.50	5.83 ± 0.45	5.85 ± 0.43	1.086 0.297	2.029 0.363	3.901 0.142	
干预组(36例)	5.72 ± 0.51	5.67 ± 0.54	5.72 ± 0.45				
	对照组(40例) 干预组(36例) 对照组(40例) 干预组(36例) 对照组(40例) 干预组(40例) 干预组(40例) 干预组(36例) 对照组(40例) 干预组(40例) 干预组组(40例) 干预组组(40例) 干预组组(40例) 干预组组(40例)	对照组(40 例) 21.00 ± 1.95 干预组(36 例) 21.06 ± 2.06 对照组(40 例) 2.93 ± 1.00 干预组(36 例) 2.83 ± 1.11 对照组(40 例) 2.65 ± 0.53 干预组(36 例) 2.58 ± 0.55 对照组(40 例) 4.45 ± 0.93 干预组(36 例) 4.36 ± 0.96 对照组(40 例) 1.60 ± 0.59 干预组(36 例) 1.72 ± 0.57 对照组(40 例) 1.28 ± 0.55 干预组(36 例) 1.19 ± 0.58 对照组(40 例) 1.85 ± 0.86 干预组(36 例) 1.85 ± 0.86 干预组(36 例) 2.00 ± 0.72 对照组(40 例) 5.75 ± 0.50	対照组(40 例) 21.00 ± 1.95 20.75 ± 1.81° 干预组(36 例) 21.06 ± 2.06 21.19 ± 2.15 対照组(40 例) 2.93 ± 1.00 2.78 ± 0.95 干预组(36 例) 2.83 ± 1.11 2.86 ± 1.10 対照组(40 例) 2.65 ± 0.53 2.85 ± 0.36° 干预组(36 例) 2.58 ± 0.55 2.42 ± 0.60° 対照组(40 例) 4.45 ± 0.93 4.15 ± 0.80° 干预组(36 例) 4.36 ± 0.96 5.03 ± 0.85° 5 対照组(40 例) 1.60 ± 0.59 1.67 ± 0.57 干预组(36 例) 1.72 ± 0.57 1.58 ± 0.60° 対照组(40 例) 1.28 ± 0.55 1.25 ± 0.49 干预组(36 例) 1.19 ± 0.58 1.14 ± 0.49 対照组(40 例) 1.85 ± 0.86 1.72 ± 0.60 干预组(36 例) 2.00 ± 0.72 1.86 ± 0.64 対照组(40 例) 5.75 ± 0.50 5.83 ± 0.45	对照组(40 例)	理知 基致 干顶 3 个月后 干顶 6 个月后 $\overline{}$	理 別 基致 干損 3 γ β β γ β β γ	

注:与同组基线比较, $^{*}P < 0.05$;与对照组同时间点比较, $^{b}P < 0.05$ 。

化,但 85% 患者主观感受睡眠质量较前好转。见 表 4。

对不伴有焦虑抑郁的 MCI 患者的 SAS、SDS 分值进行分析,结果显示,随访 3 个月和 6 个月时,对照组 SAS 分值均较基线增加 (P=0.001、P=0.003), SDS 分值也均较基线增加 (P<0.001、P=0.001),而干预组于随访 6 个月时 SDS 分值较基线下降 (P=0.015)。随访 3 个月和 6 个月时,2组 SAS 分值的比较 (P=0.028、P=0.001)和 SDS 分值的比较差异均具有统计学意义 (分别为 P=0.001)和 SDS 分值的比较差异均具有统计学意义 (分别为 P=0.001)

0.030、P < 0.001)。 见表 5。

讨 论

MCI 是临床可识别的痴呆前状态,MCI 患者的痴呆年转化率为 10%~15%^[11]。对 MCI 的预防和早期干预在降低痴呆转化率、延缓痴呆的发生等方面具有重要意义。研究表明运动干预可维持认知功能的稳定性和延缓痴呆的进程^[1243]。

本研究显示对照组 MMSE 总分呈下降趋势,

表 4 干预组与对照组 MCI 患者 SAS、SDS、NPI、PSOI 各时间点分值比较 $(\bar{x} \pm s)$

		 基 线	干预3个月后	干预6个月后	组间效应	时间效应	交互效应	
	-	项目基线		1 顶 0 个 月 归	<i>F</i> 值 <i>P</i> 值	<i>F</i> 值 <i>P</i> 值	<i>F</i> 值 <i>P</i> 值	
SAS	对照组(40例)	33.62 ± 7.44	$37.40 \pm 7.37^{\text{a}}$	$37.60 \pm 8.13^{\text{a}}$	2.861 0.091	7.330 0.026	12.366 0.002	
	干预组(36例)	34.31 ± 8.75	34.11 ± 8.30	$32.25 \pm 6.96^{\rm b}$				
SDS	对照组(40例)	37.50 ± 12.41	42.13 ± 11.90^{a}	41.75 ± 11.42^{a}	2.053 0.152	6.408 0.041	13.396 0.001	
	干预组(36例)	37.92 ± 12.34	37.06 ± 11.31	35.53 ± 11.43^{ab}				
NPI	对照组(40例)	1.13 ± 2.04	1.45 ± 2.30	1.47 ± 2.22	0.045 0.832	2.436 0.296	5.818 0.055	
	干预组(36例)	1.28 ± 3.02	1.22 ± 2.54	1.19 ± 2.72				
PSQI	对照组(40例)	6.98 ± 4.26	7.07 ± 4.55	7.40 ± 4.23	0.701 0.403	0.042 0.979	7.671 0.022	
	干预组(36例)	6.56 ± 4.12	6.50 ± 4.00	6.11 ± 3.60				

注:与同组基线比较, *P<0.05;与对照组同时间点比较, *P<0.05。

表 5 不伴有焦虑抑郁的 MCI 患者 SAS 和 SDS 各时间点分值比较 ($\bar{x} \pm s$)

单位:分

单位:分

项目	基 线	干预3个月后	干预6个月后	组间效应		时间效应		交互效应	
				F 值	<i>P</i> 值	F 值	P 值	F 值	P 值
SAS 对照组(39例)	33.13 ± 6.83	$36.95 \pm 6.88^{\text{a}}$	37.13 ± 7.66^{a}	5.002	0.025	10.993	0.004	10.163	0.006
干预组(33例)	32.55 ± 6.70	$33.15 \pm 7.87^{\text{b}}$	$31.79 \pm 5.81^{\rm b}$						
SDS 对照组(32例)	32.13 ± 6.11	38.16 ± 9.43^{a}	38.19 ± 9.58^{a}	4.924	0.026	11.915	0.003	18.184	< 0.001
干预组(29例)	32.93 ± 7.02	$33.28 \pm 8.47^{\text{b}}$	31.00 ± 5.10^{ab}						

注:与同组基线比较, ${}^{*}P < 0.05$;与对照组同时间点比较, ${}^{b}P < 0.05$ 。

其注意力与计算力、语言等亚项得分在随访3个月和(或)6个月时下降且差异具有统计学意义,干预组则无明显变化,提示健脑操干预训练可改善MCI患者注意力与计算力认知域功能,这与以往有关运动训练可改善注意力的研究结果相一致[1415]。本研究显示虽然健脑操不能明显改善MCI患者MMSE和MOCA总分,但能改善MOCA注意力与计算力亚项评分,提示与MMSE相比,MOCA对MCI患者的随访评估可能更为敏感,与以往研究结果相一致[16]。

研究表明,焦虑和抑郁症状是 MCI 向痴呆转化的重要危险因素^[1748]。运动干预可改善 MCI 患者的焦虑和抑郁症状^[19]。本研究显示,对照组在随访 3 个月和 6 个月时 SAS 和 SDS 分值均较基线增加,而干预组 SAS 无明显变化,SDS 得分在随访 6 个月时较基线下降(P=0.009),且此时 2 组 SAS、SDS 分值的比较差异均具有统计学意义,提示健脑操干预训练对 MCI 患者具有稳定情绪的作用,与以往研究结果一致^[19]。对照组不伴焦虑和抑郁症状的 MCI 患者的 SAS、SDS 分值增加,而干预组 SAS 分值维持相对平稳,SDS 得分在随访 6 个月时较基线下降,且 2 组于随访 3 个月和 6 个月时的比较差异均具有统计学意义,提示健脑操训练在一定程度上可预防或延迟 MCI 患者焦虑和抑郁症状的出现。2 组间 NPI 分值差异无统计学意义,考虑可

能与伴有精神行为症状的 MCI 患者样本量偏少有关,但结合本研究对象 SAS、SDS 分值的改变,本研究组认为本结果与以往有关运动干预可缓解 MCI 患者精神行为症状的研究结果相一致[1920]。本研究干预前 MCI 患者睡眠质量异常占 39.5%,干预后 2组 PSQI 分值无明显变化,但在随访的过程中大部分干预对象主观感受睡眠质量较前好转,可能适当延长干预时间或者增加每周干预的频次会呈现不同的干预效果,仍需进一步探讨。

综上所述,健脑操训练可在一定程度上改善MCI 患者认知功能、稳定情绪,在预防或延缓 MCI 患者向痴呆转化方面可能具有积极作用。同时,因健脑操具备低成本性及可及性的特点,在社区 MCI 患者中具有普适意义。

参考文献

- [1] 李海员,邓永萍,徐武华,等.轻度认知障碍患者精神行为症状与血浆 IGF-1 水平的相关性研究.广东医科大学学报,2017,35(2):125-127.
- [2] Langoni C D S, Resende T L, Barcellos A B, et al. Effect of exercise on cognition, conditioning, muscle endurance, and balance in older adults with mild cognitive impairment: a randomized controlled trial. J Geriatr Phys Ther, 2019, 42 (2): E15-E22.
- [3] 赵景茹, 吕佩源. 2017年 AAN 轻度认知功能障碍实践指南

- 解读. 中国全科医学, 2018, 21(12): 1387-1391.
- [4] Folstein M F, Folstein S E, McHugh P R. "Mini-mental state" A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res., 1975, 12 (3): 189-198.
- [5] 郭起浩,秦震,吕传真.阿尔茨海默病认知功能量表述评. 中华神经科杂志,2000,33(3):179-182.
- [6] Nasreddine Z S, Phillips N A, Bédirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc, 2005, 53 (4): 695-699.
- [7] Zung W W K. A rating instrument for anxiety disorders. Psychosomatics, 1971, 12 (6): 371-379.
- [8] Zung W W. A self-rating depression scale. Arch Gen Psychiatry, 1965, 12: 63-70.
- [9] Cummings J L. The Neuropsychiatric Inventory: assessing psychopathology in dementia patients. Neurology, 1997, 48 (5 Suppl 6): S10-S16.
- [10] Tarlow B J, Wisniewski S R, Belle S H, et al. Positive aspects of caregiving. Res Aging, 2004, 26 (4): 429-453.
- [11] Xue J, Li J, Liang J, et al. The prevalence of mild cognitive impairment in China: a systematic review. Aging Dis, 2018, 9 (4): 706-715.
- [12] Lam L C W, Chau R C M, Wong B M L, et al. A 1-year randomized controlled trial comparing mind body exercise (Tai Chi) with stretching and toning exercise on cognitive function in older Chinese adults at risk of cognitive decline. J Am Med Dir Assoc, 2012, 13 (6): 568.e15-568.e20.
- [13] Voelcker-Rehage C, Godde B, Staudinger U M. Cardiovascular and coordination training differentially improve cognitive

- performance and neural processing in older adults. Front Hum Neurosci, 2011, 5: 26.
- [14] 周香莲,周媛媛,王丽娜,等.老年性轻度认知功能障碍患者运动干预策略的研究进展.中国全科医学,2018,21(12):1408-1412.
- [15] Fallah N, Hsu C L, Bolandzadeh N, et al. A multistate model of cognitive dynamics in relation to resistance training: the contribution of baseline function. Ann Epidemiol, 2013, 23(8): 463-468.
- [16] Pinto T C C, Machado L, Bulgacov T M, et al. Is the Montreal Cognitive Assessment (MoCA) screening superior to the Mini-Mental State Examination (MMSE) in the detection of mild cognitive impairment (MCI) and Alzheimer's Disease (AD) in the elderly? Int Psychogeriatr, 2019, 31 (4): 491-504.
- [17] Dean K, Oulhaj A, Zamboni G, et al. Role of depression in predicting time to conversion to mild cognitive impairment. Am J Geriatr Psychiatry, 2014, 22 (7): 727-734.
- [18] 文乐菊, 罗华, 袁志俊. 急性缺血性卒中患者情绪、自主神 经功能改变及其与神经功能缺损程度的相关性研究. 实用心 脑肺血管病杂志, 2018, 26(7): 45-49.
- [19] 张新安,李新.MCI 中老年人认知功能及情绪的运动干预效应研究.中华医学会第十四次全国精神医学学术会议论文集,2016:72-73.
- [20] 陈秋荷,涂亚林,侯加卫,等.PT109改善链脲佐菌素诱导的散发性阿尔茨海默病小鼠认知功能障碍的作用及机制.中山大学学报(医学科学版),2021,42(5):694-702.

(收稿日期: 2022-08-22) (本文编辑: 洪悦民)